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Data Mining and Knowledge Discovery:
Logistics and lecturers

Contacts: http://kt.ijs.si/petra kralj/dmkd3.html

Nada Lavrac: nada.lavrac@ijs.si
— Introduction: ML and DM, decision tree learning, rule learning

— Relational learning: relational learning, semantic data mining
— Advanced topics: text mining, clustering, outlier detection

Petra Kralj Novak: petra.kralj.novak@ijs.si

— classification, evaluation, regression + practice with Orange in Scikit

— association rules, clustering + practice with Orange

— neural networks hands-on with Keras

Martin Znidar$i¢: martin.znidarsic@ijs.si

— Advanced topics: SVM, neural networks, ensemble learning, active learning
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ICT3 Course Schedule - 2020/21

ICT3 — for materials, see http://kt.ijs.si/petra kralj/dmkd3.html
for lectures, use IPS ZOOM link

10.11.2020
17.11.2020
24.11.2020
1.12.2020
8.12.2020

15.12.2020

22.12.2021

19.1.2021

15:00 - 17:00
15:00 - 17:00
15:00 - 17:00
15:00 - 17:00
15:00 - 17:00

15:00 - 17:00

15:00 - 17:00

15:00 - 18:00

prof. dr. Nada Lavraé
doc. dr. Petra Kralj Novak
prof. dr. Nada Lavrac
doc. dr. Petra Kralj Novak
doc. dr. Martin Znidarsié

doc. dr. Petra Kralj Novak, doc. dr. Martin Znidarsic

doc. dr. Petra Kralj Novak
- Oral exam
- Using Petra’s personal ZOOM link

prof. dr. Nada Lavrac
- Seminar presentations
- Using IPS ZOOM link


http://kt.ijs.si/petra_kralj/dmkd3.html

Data Mining and Knowledge Discovery:
Credits and Coursework

Course requirements (10 ECTS credits):

« Attending lectures and selected hands-on exercises
« Oral exam (40%)
« Seminar (60%):

— Data analysis of your own data

— .... own initiatives highly recommended ...



Data Mining and Knowledge Discovery:
Credits and Coursework

Exam: Oral exam - Theory
Seminar: topic selection + results presentation

« One hour available for seminar topic discussion — one page
written proposal defining the task and the selected dataset

« Deliver written report + electronic copy (4 pages in
Information Society paper format, instructions on the web)

— Report on data analysis of own data needs to follow the
CRISP-DM methodology

— Presentation of your seminar results (15 minutes each: 10
minutes presentation + 5 minutes discussion)
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Open source machine learning and data
visualization toolbox

— https://orange.biolab.si/
— http://file.biolab.si/datasets/

— https://www.youtube.com/channel/lUCIKKWBe2SC
AEyv7ZNGhle4q

Interactive data analysis workflows
Visual programming

Based on numpy, scipy and scikit-learn
GUI: Qt framework



https://orange.biolab.si/
http://file.biolab.si/datasets/
https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g

Keras

Hands-on exercises

Open source machine learning and data visualization
Interactive data analysis workflows with a large toolbox
Visual programming S

Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M,
Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L,
Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining
Toolbox in Python, JMLR 14(Aug): 2349-2353.

Data Table

Blle

scikit-learn is Gold standard of Python machine learning
Simple and efficient tools for data mining and data analysis
Well documented

Pedregosa et al. (2011) Scikit-learn: Machine Learning in Python,
JMLR 12, pp. 2825-2830.

Neural-network library written in Python.
Chollet, F. et al. (2015) "Keras"



http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://orange.biolab.si/

Data Mining and Knowledge Discovery:
Supporting material

« Supporting material on videolectures.net:

Seminar: Al for Industry and Society, Ljubljana 2020
— http://videolectures.net/AlindustrySeminar2019/

— Marko Robnik Sikonja: Artificial Intelligence: Techniques, Trends
and Applications

— Nada Lavrac: Data Science, Machine Learning and Big Data:
Current trends

— Blaz Zupan: Data Science with the OrangeToolbox



http://videolectures.net/AIindustrySeminar2019/

Machine Learning and Data Mining

« Machine Learning (ML) — computer
algorithms/machines that learn predictive
models from class-labeled data

« Data Mining (DM) — extraction of useful
information from data: discovering
relationships and patterns that have not
previously been known, and use of ML
techniques applied to solving real-life data
analysis problems

« Knowledge discovery in databases (KDD) —
the process of knowledge discovery



Data Mining and KDD

« Buzzword since 1996

« KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

« Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

10
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KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data
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« KDD process involves several phases:
* data preparation
 data mining (machine learning, statistics)
 evaluation and use of discovered patterns

« Data mining Is the key step, but represents only
15%-25% of the entire KDD process



Big Data

« Big Data — Buzzword since 2008 (special
Issue of Nature on Big Data)

— data and technigues for dealing with very
large volumes of data, possibly dynamic
data streams

— requiring large data storage resources,
special algorithms for parallel computing
architectures.

12



The 4 Vs of Big Data
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It's estimated that

2.5 QUINTILLION BYTES

[ 23 TRILLION GIGABYTES |
of data are created each day

40 ZETTABYTES
(43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

The
FOURV’s
of Big
Data

From traffic patterns and music downloads

2020

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[ 100,000 GIGABYTES |
of data stored

data, and how can these

WORLD POPULATION: 7 BILLION tor, IBM
four dimensions: Volume,

ety and Veracity

scientists

Modern cars have close to

100 SENSORS

that monitor items such as
fuel level and tire pressure

The New York Stock Exchange
captures

1718 OF TRADE
INFORMATION

during each trading session

omer needs, optimize operatic

nfrastructure, and find new sources of

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION IT JOBS

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYY YYYrYYYY
e LY TTTTXTIT

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

es,t-imated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[ 161 BILLION GIGABYTES | HEALTH MONITORS

4 BILLION+
HOURS OF VIDEOD

are watched on
YouTube each month

You
LTube )

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook

every month
Qoo

Poor data quality costs the US
economy around

1 IN 3 BUSINESS

LEADERS

it tr $3.1 TRILLION A YEAR
don’t trust the information $3.1 TRILLION A YEAR
they use to make decisions .

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Data Science

 Data Science — buzzword since 2012 when
Harvard Business Review called it "The
Sexiest Job of the 21st Century"

— an Interdisciplinary field that uses scientific
methods, processes, algorithms and
systems to extract knowledge and insights
from data in various forms, both structured
and unstructured, similar to data mining.

— used interchangeably with earlier concepts
like business analytics, business
Intelligence, predictive modeling, and
statistics.

14
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Machine Learning and Data Mining

data

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE

02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE 1 1
014 35 hypermetrope no normal SOFT g g
015 43 hypermetrope yes reduced NONE Data Mlnlng
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 ... model, patterns, ...
024 56 hypermetrope yes normal NONE
data

Given: class labeled data
Find: a classification model, a set of interesting patterns



Machine Learning and Data Mining

data
Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE
02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE 1 1
014 35 hypermetrope no normal SOFT g g
015 43 hypermetrope yes reduced NONE Data Mlnlng
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

Given: class labeled data
Find: a classification model, a set of interesting patterns

new unclassified instance |'

classified instance

black box classifier

no explanation

>

model, patterns, ...

symbolic model
symbolic patterns” }\

explanation i 3

L.ab

16



Why learn and use black-box models

Given: the learned classification model
(e.g, a linear classifier, a deep neural network, ...)

Find: - the class label for a new unlabeled instance

new unclassified instance N, classified instance

Advantages:
- best classification results in image recognition
and other complex classification tasks

Drawbacks:
- poor interpretability of results
- can not be used for pattern analysis



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

new unclassified instance classified instance

Advantages:
- use the model for the explanation of classifications of
new data instances
- use the discovered patterns for data exploration

Drawbacks:
- lower accuracy than deep NNs
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .
O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE



Pattern discovery in Contact lens data

Person Age Spect. presc. | Astigm. Tear prod.  Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 ..

Oo14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE

PATTERN

Rule:

IF
Tear prod. =
reduced

THEN
Lenses =
NONE



Learning a classification model from

21

contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision tree classification model
learned from contact lens data

nodes: attributes
arcs: values of attributes
reduced \

normal leaves: classes
NONE astigmatism

I'ID/ yes

SOFT

spect. pre.

myope / \hypermetrupe

HARD NONE




Learning a decision tree classification *
model

reduced{//' ““ahxhﬂfnnal

NONE
no /

SOFT

spect. pre.

lnyopi/// \\\rypennenope

HARD NONE

Search heuristics: Which attribute to test at each node in the tree ? The
attribute that is most useful for classifying examples.

« First define a measure called entropy, to characterize the (im)purity of
an arbitrary collection of examples

« Information gain of an attribute is measured as reduction of entropy
of a training set S after splitting into subsets based on values of
attribute A



Entropy

* S -training set, C,,...,C, - classes

* Entropy E(S) — measure of the impurity of
training set S

N
E(S) = —Z p..10g, p.  P.- prior probability of class C,
—1

(relative frequency of C_ in S)

« Entropy In binary classification problems

E(S) =-p,log,p, - p.log,p.

24



Entropy

E(S) = - p.log,p. - p.log,p.
The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o /\

08 / N\

/ N\
B o0 / \
Zos |/ \
£ 04 / \
0a 1] \
o1 1 \
o !

0 0,2 0,4 0.6 0,8 1 Pt
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Information gain
search heuristic

Information gain measure is aimed to minimize the number of tests
needed for the classification of a new object

Gain(S,A) — expected reduction in entropy of S due to sorting on A

Gain(S,A)=E(S)- >’ ISvl.E(sv)

veValues(A) | S |

Most informative attribute :

— Select S

— Select A to split S into S1,S2, ...Sv

— Select A, which maximizes info. Gain: max Gain(S,A)

26



Pruning of decision trees

« Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data

27
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 1H <3 > 3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18 recurrence 10

<4

no_recur 4
recurrence 1

no_rec 4 recl



Pruned decision tree for
contact lenses recommendation

tear prod.

Nﬁ)rmal

no / yes

reduced /

NONE

[N=12,S+H=0]

SOFT

[S=5,H+N=1]

myope / \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

29



Overfitting and accuracy

« Typical relation between tree size and accuracy

0.9
0.85 —
0.8 /_/
0.75 /_/
0.7 / \ ;/_
0.65 /
0.6
0.55
0.5 : : : : :
0 20 40 60 80 100

120

— On training data
— On test data

* Question: how to prune optimally?

30



Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

forward pruning considered inferior (myopic)
* post pruning makes use of sub trees

31



Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (Seeb, Quinlan)
— J48 (available in WEKA), Tree (in Orange)

« Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA), Tree (in Orange)

32



Selected decision tree learners

* Decision tree learners: Tree (in Orange)

v [ree ? X
i

MName

Tree | Iree

Parameters

] Induce binary tree

] Min. number of instances in leaves: 2 (S
[~] Do not split subsets smaller than: 55
[] Limit the maximal tree depth to: 100 =
Classification

[~ stop when majority reaches [%]: [ 35 T‘
Apply Automatically

? B




Selected decision tree learners

Homework

— To prepare for the lecture of Petra Kralj Novak on 17 Nov. 2020:
— see Blaz Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AlindustrySeminar2019 zupan data science/

— see also YouTube tutorials on Orange
https://www.youtube.com/channel/UCIKKWBe2SCAEyv7ZNGhle4q

34


http://videolectures.net/AIindustrySeminar2019_zupan_data_science/
https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g

Learning a classification model
from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
01 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE

lenses=NONE « tear production=red

Data Mining
tear prod.
reduced/ Ni)rmal
NONE astigmatism

no/

SOFT

myope /

HARD

35

spect. pre.

i hypermetr:

lenses=NONE <« tear production=normal AND astigmatism=yes AND
spect. pre.=hypermetrope

lenses=SOFT <« tear production=normal AND astigmatism=no

lenses=HARD <« tear production=normal AND astigmatism=yes AND

spect. pre.=myope
lenses=NONE «



Classification rules model learned
from contact lens data

lenses=NONE <« tear production=reduced
lenses=NONE « tear production=normal AND
astigmatism=yes AND
spect. pre.=hypermetrope
lenses=SOFT <« tear production=normal AND
astigmatism=no
lenses=HARD <« tear production=normal AND
astigmatism=yes AND
spect. pre.=myope
lenses=NONE «

36



CN2 rule learner in Orange

‘& CN2 Rule Induction ? ¥
Name
CN2 rule inducer
Rule ordering Covering algorithm
(® Ordered (® Exdusive
ceu O Unordered O Weighted ¥: 0.70 %
..
Rule search
CN2 Rule Induction A e = =
Beam width: 5 is
Rule filtering
Minimum rule coverage: 1S
Maximum rule length: 5 j&
Statistical significance —Ta
L Gefaut o): 100 i
L] l(ipe::nvte a’;?‘iﬁmm 1.00 &
% Apply Automatically

? B




Learning from Unlabeled Data

Person Age Spect. presc. Astigm. Tear prod.\ Lenses /
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013 .
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

38



Multi-label Learning Task

Person Age Spect. presc. Astigm. Tear prod.| Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
o4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013
014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE

019-023 no
024 56 hypermetrope no normal NONE

Several class labels of training examples of a single Target
class attribute



Binary Classification

Person Age Spect. presc. Astigm. Tear prod.| Lenses
Ol 17 myope no reduced NO
02 23 myope no normal YES
O3 22 myope yes reduced NO
o4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013

014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO
019-023 ..
024 56 hypermetrope yes normal NO

Binary classes
* positive vs. negative examples of Target class
« Concept learning — binary classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Multi-target Classification

Person Age Spect. presc. Astigm. Tear prod.

o1 17 myope no reduced
o2 23 myope no normal
o3 22 myope yes reduced
o4 27 myope yes normal
05 19 hypermetrope no reduced
06-013 .
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal
019-023 .
024 56 hypermetrope yes normal

Multi target classification
— each example belongs to several Target classes



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013
014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0

019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Example regression problem

(see lectures of Petra Kralj Novak on 17 November 2020)

« data about 80 people: Age and Height

Age ([ Height
; 3 | 1.03
203 MO Sa Syt o 5 | 149
. ;:"’ :0:& o 0.’.’0:3 ‘e 5 126
& ‘} g | 139
£ 15 | 169
s ¢ 19 | 167
77 | 186
0.5 75 | 185
* Height 41 | 159
0 . 48 | 160
0 50 100 54 | 1.90
Age 71 | 187




Age

« Average of the target variable is 1.63

Baseline numeric model (predictor)

2
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1.4
1.2
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N O P0,® L% * s 0’.:0 .6 :
e 25 8
¢
:0
G
o
{od
2
+ Height N
. | = Average predictor |
Baseline 20 40 60 80

0.85

10

1.4

100

35

1.7

70

1.6




Linear Regression Model

Height = 0.0056 * Age + 1.4181
2.5
2 TN . ou gm ™"
&% 00 ?%? o o 2 -~
R R N R
= 15 &
] é
T 1 _f
0.5 ¢ Height =
= Prediction
O | | | |
0 20 40 60 80 100
Age
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Regression tree

==1245 =125
s s 233%)
<=6.5 =6.5 Height =
E3 s s o 1709
==4 =4 Height = 2
l T 1.4644 Y S SRR
e wawie H S0 o
Height = Height = 1o =gt
1.3932 1.4025 £ é
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® Prediction
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0 50 100
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Model tree

==12.5

Height =
0.0333 * Age
+ 1.1366
2 RN oo (S ‘e, ¢
é"_.k’- gmmi 0‘ - ? !
15 ¢ oo .”’0 oo %o 00 ¢
L
(@)
5 1%
T
0.5 + Height
= Prediction
O | | | |
0 20 40 60 80 100

Age

=12.5

—

Height =
0.0011 * Age
+ 1.6692



KNN — K nearest neighbors

* Looks at K closest examples (by age) and predicts the
average of their target variable

K=3

Height

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

+ Height

0 20 40 60
Age

= Prediction KNN, n=3

80

100
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First Generation Machine Learning

* First machine learning algorithms for

— Decision tree and rule learning in 1970s and early 1980s
by Quinlan, Michalski et al., Breiman et al., ...

* Characterized by
— Learning from data stored in a single data table
— Relatively small set of instances and attributes

 Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences |JCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed

49



Second Generation Data Mining

* Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Industrial standard CRISP-DM methodoloay (1997)
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— Since 1996 new buzzword: Knowledge discovery In
databases (KDD)

— KDD is defined as “the process of identifying valid,
novel, potentially useful and ultimately understandable
models or patterns in data.”



KDD Process

KDD process of discovering useful knowledge from data

MANUAL

PREPROCESSING

|||||| |I |I rr
vy _F'r

SELECTION
DATA MINING
EVALUATION

Background
knowledge

- - Preprocessed . Transformed Models
Data I data ] data I Patt,erns Hnﬁw‘ﬂ'dgﬂ'

TRANSFORMATION

MACHINE LEARNING

KDD process involves several phases:
— data preparation

— machine learning, data mining, statistics, ...
— evaluation and use of discovered patterns

Machine Learning (ML) / Data Mining (DM) is the key step In
the KDD process

— performed using machine learning or pattern mining techniques for
extracting classification models or interesting patterns in data

— this key step represents only 15%-25% of entire KDD process

51



52

Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

— Include numerous data mining algorithms

— enable data and model visualization

— like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction
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Data Mining Workflows for
Open Data Science

Workflows are executable visual representations of
procedures

— divided into smaller chunks of code (components)
— organized as sequences of connected components.
Suitable for representing complex scientific pipelines
— by explicitly modeling dependencies of components

Building scientific workflows consists of simple operations on
workflow elements (drag, drop, connect), suitable for non-
experts

r1—LL

o {7

&?ﬂ



Second Generation Data Mining

* Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

—
=

SELECTION
MANUAL
PREPROCESSING
TRANSFORMATION
MACHINE LEAHNlHG:
DATA MINING

n
EVALUATION

»
I

— New conferences on practical aspects of data mining
and knowledge discovery: KDD, PKDD, ...

— New learning tasks and efficient learning algorithms:

» Learning descriptive patterns: association rule learning,
subgroup discovery, ...

» Learning predictive models: Bayesian network learning,,
relational data mining, statistical relational learning, SVMs, ...



Subgroup Discovery

 Data transformation:

— binary class values (positive vs.
negative examples of Target
class)

e Subgroup discovery:

— atask in which individual
Interpretable patterns in the
form of rules are induced from
data, labeled by a predefined
property of interest.

e SD algorithms learn several
Independent rules that
describe groups of target
class examples

— subgroups must be large and
significant
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Person Age Spect. presc.  Astigm. Tear prod.| Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 "
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO
Class A Class B




SD algorithms in Orange DM Platform

« Orange data mining

toolkit 2
— classification and subgroup 3 e
— data mining workflows i

— visualization

« SD Algorithms in Orange
- SD (Gamberger & Lavrac, JAIR 2002)
— Apriori-SD (Kavsek & Lavrac, AAl 2000)
— CN2-SD (Lavrac et al., IMLR 2004)



Relational Data Mining

customer
ID [Zip (3. [0l [A[CI [Re .
/ x|t jcome Befub |5 knowledge discovery
/ 3478(34677|m [si [60-70[32|me [nr from data
3479(43666/f |ma|80-90[45|nm|re
/ order . 3.9

BB T ede |Mode: Relational Data Mining
3478 [2140267(12  \ |regular |cash
3478 3446778|12 express [check
3478 4728386|17  lregular |check
3479 323344417 xpress |credit
3479 [3a75886)12 kigulm credit model, patterns,

store

Store ID|Size [Type Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables, sets of logical
facts, a graph, ...
Find: a classification model, a set of patterns



Relational Data Mining

* |ILP, relational learning,
relational data mining

— Learning from complex
relational databases

customer

Zip |S |So |In
€X (S |come gelyh

A [Cl [Re
BY

3478|34677|m |si  |60-T0|32|me [nr
3479 |43666/f |ma 80-90(45(nm{re

/ order

Customer [Order |Store |Delivery [Paymt

D D D \ Mode ~ [Mode

3478 214026712 \ regular |cash

3478 3446778(12 express |check

3478 4728386(17 regular  |check

3479 3233444(17 xpress |credit

3479 3475886(12 gular  |credit

stare

Store ID[Size [Type |Location
12 small (franchise city
17 large |indep  [rural

Relational representation of customers, orders and stores.




Relational Data Mining

* |ILP, relational learning,
relational data mining

— Learning from complex
relational databases

— Learning from complex
structured data, e.g.
molecules and their
biochemical properties

Mutagenesis

Molecule [

3478|34677|m |si  |60-T0|32|me [nr
3479 |43666/f |ma 80-90(45(nm{re

/ order
Customer [Order [Store |Delivery [Paymt
D 1D D} |Mode ~ |Mode
3478 214026712 \ regular |cash
3478 3446778(12 express |check

3478 4728386(17 regular  |check
349 [3233444(17 gixpres credit
ar

3479 347588612

stare

Store ID[Size [Type |Location

12 small (franchise city
17 large |indep  [rural

Relational representation of customers, orders and stores.



Relational and Semantic Data Mining

customer
1D |Zip § Soln  |A|C]

* ILP, relational learning, Ao

3478|34677|m |si  |60-T0|32|me [nr

relational data mining S

— Learning from complex Mutagenesis __ #[i- B B
relational databases /G

| Molecule
— Learning from complex

sy

3478 214026712 \ regular |cash
3478 3446778(12 express |check
3478 4728386(17 regular  |check

3479 3233444(17 xpress |credit
3479 347588612 ar

stare

structured data, e.g.

Store ID[Size [Type |Location

12 small |franchise i
17 large |indep  rur

molecules and their

biochemical properties
— Learning by using
domain knowledge in the

form of ontologies =
- - . G0:0006520
SemantIC data mlnlng amino acid biogenic amine

Relational representation of customers, orders and stores.

G0:0009308
amine metabolism

G0:0006576

G0:0009309
metabolism metabolism

amine bio-
ynthsis
GO0:0008652
amino acid @ c0:00042401

biosynthesis biogenic amine synthesis




Third Generation Machine Learning

« Developed since 2010s:
— Focused on big data analytics
— Addressing complex data mining tasks and scenarios

— New conferences on data science and big data
analytics; e.qg., IEEE Big Data, Complex networks, ...

— New learning tasks and efficient learning algorithms:
« Analysis of dynamic data streams, Network analysis, Text
mining, Semantic data analysis, ...
— Lots of emphasis on automated data transformation

* Propositionalization of relational data, of heterogeneous
information networks, ...

« Embedding of texts, networks, knowledge graphs, entities
(features), ... is highly popular in the last few years

-
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Representation Learning

> - ] E ] |99 =
o -4 e =] ZZ o
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Background Wl &= = = — % — =
- — e
knowledge | & T | s (T | [
L = o =
. — E =
' Preprocessed . Transformed ' Models
Data [ data ] data [ Patterns Knowledge

* Representation learning = Automated data transformation,

performed on manually preprocessed

data

« Transformation requires handling heterogeneous data
— Data (feature vectors, documents, pictures, data streams, ...)
— Background knowledge (multi-relational data tables, networks, text

corpora, ...)
* Propositionalization:
— Multi-relational data transformation

data
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Data transformation for Relational Learning

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D Dy [Mode ™ |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

Propositionalization:

Step 1

Propositionalization

1. constructing
relational features

2. constructing a
propositional table
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Data transformation for Relational Learning

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

Propositionalization:

Step 1

Propositionalization

Step 2

Machine Learning
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gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
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model, patterns, ...



Propositionalization:
Data transformation for Relational Learning

customer
D |Zip |3 |80 In_|A|CI |Re
/ €x|S¢ (come |ge|yD [5D :
Step1 £1 |2 | £3 | £1 | £5 | £6 fn
347834677 |m [si |60-70[32|me |nr :
3479|43666|f |ma 80-90[45|nm|re gl 10 (o1 )11 y0 {01011
g2l 01 (1011 y0 {00110
~ = T R U VI 1
orqer A 2 -
Clsfomer [Order [Siore [Delivery [Paymt Propositionalization gl L)tfjofefaofojafurfe]o
LB P\ [Mode Mode ol clolole]elc]e]olr]0
3478 |2140267/12  \ [regular |cash aglololalelalolaolelololo]s
3478 344677812 express |check
3478 4728386(17  [regular |check /2 R A A I
3479 3233444|17 xpress  |credit .
3479 3475886|12 Sig'ula:r credit | . | CEN IER A U U N NN U (o I B U
\ 1. construct relationa g ool ofeolafole]efo]s
S—— features
Store ID|Size |Type |Location
T2 |omaal anchiseleiy 2. construct a
17 large [indep  [rural
Relational representation of customers, orders and stores. p p
target(A) :-—
S P R B p - ‘Doctor’ (A), ’Italy’(A).
f1|f2 | 3 |4 | £5 | f6 fn Ste 2
S N T O 0 O R A p target(A) :-
L 2 T 1 1 A I A1 Public’ (A), *Gold’ (A).
gg |01 (1100 f{11r)0 001
3 target (A) :-
g1t rfojtfjojo]il1]L]e SUbgrOUp d|SCOV9ry "Poland’ (A), ’Deposit’(A), ’Gold’(A).
L T S A 1 A A 1 I A1
atlololcfelalole]clalo]o]r target(A) :-
‘Germany’ (A), ’Insurance’ (A).
L 2 R e 1 1 A O A I IO
g |00 (oo yofo 1)Ly yofon target (A) :-
gbltlofaejefofr|olol1]o]t ’Service’ (A), ’Germany’(A).

patterns (set of rules)



Propositionalization: o
Data transformation for Semantic Data Mining

— Step1 M Talelelals o .
o S N T O O I O O I O
b g glolalajolefefololo]a]1]o
C;14 35 hyper&n‘elmpe no no‘r‘r‘nal SOFF . . . . q. 3 I 1 1 1 i i 1 1 i 0 I 1
\ SoofoE = e e Propositionalization FI R R RS PN R TR FR R
0170V BUV 55%% n reduced NONE
018 1 peni sl sam adWBDR I3 sn sl rmal NONE gE 1 1 i, i i 1 i 1 1 i 1 i
AR oAiNiie iMClapOiidim
56 hypermetiope v el NONE gilojolefeflaoflolole|o]olo]t
j 28 I T O A T A A A I
. @glolofolof{a]ofolr|t]1|o]o
G0:0006520 S,ﬁ,,?f‘:,?ﬁ“g G0:0006576. RN NEEDE
amino acid nthsis biogenic amine . :
amino o y mereme 1. constructing relational
features
G0:0008652 .
amino acid © c0:00042401 2. constructing a
biosynthesis biogenic amine synthesis

propositional table

The approach: Using relational subgroup discovery in the SDM context

» General purpose system RSD for Relational Subgroup
Discovery, using a propositionalization approach to relational data
mining

« Applied to semantic data mining in a biomedical application by
using the Gene Ontology as background knowledge in analyzing
microarray data §

Zelezny and Lavrac, MLJ 2006



Text mining: Viewed In propositionalization
context: BoW data transformation

Document Word1l Word2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NG
construction fodm] . . .
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23

d24 0 0 1 o NO model, patterns, clusters,



BoW construction: Feature weights and Cosine
similarity between document vectors

« Each document D is represented as a vectcl)\1 of
TF-IDF WelghtS tf|df (W) _ tf | |Og( )
df (w)
« Similarity between two vectors is estimated by the

similarity between their vector representations
(cosine of the angle between the two vectors):

]

Similarity (D,,D,) =

RS




Embeddings-based Data Transformation
for Text mining

» Corpus embedding,

Document embEdding, Document  Word1 Word?2 WordN Class
T di 1 1 0 1 NO

Sentence emb_eddmg, o . . X . Ve
word embedding d3 1 1 1 1 NO
d4 1 1 1 0 YES

(e.g., word2vec) e . . . : o
. d6-d13

. Tran@formlng d1a 0 0 o o VES
documents by d15 0 0 1 1 NO

: : d16 0 0 1 0 NO
projecting _ d17 0 1 0 1 NO
documents into d18 0 1 0 0 NO
d19-d23 .

vectors (rows of a o : ; ; ; o

data table)



Embeddings-based Data Transformation
for Text mining

- Corpus embedding, N
Document embedding, « 131 oo e
Sentence embedding,
word embedding a0 1 o i
(e.g., word2vec) M

. Tran@forming

documents by P
projectlng TN:K R S A n
documents into L

vectors (rows ofa NG ”
data table) [ TEZTEE
* Weights o 1,
correspond to
weights in the Enbedding q
embedding layer of “*

The gold or gold

a heural network

LM pre-training Classifier fine-tuning



Embedding-based Data Transformation
for Text mining

» Corpus embedding, Document embedding, Sentence embedding,
word embedding, ...

* Representations of word meaning obtained from corpus statistics

- Spatial relationships correspond to linguistic relationships

disambiguation
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Cross-domain or cross-lingual Embeddings-
based Data Transformation for Text mining

- Aligning embedding spaces across domains or languages

(A) (B) @ ()

- EMBEDDIA H2020 project (2019-2021) coordinated by
Jozef Stefan Institute: Cross-lingual embeddings for
less-represented languages in news media industry

* developing new language models for less represented
languages

* Using advanced embedding models like GloVe and
contextual embedding models like Bert in news analysis
applications and in UGC commentary filtering



Part |I: Summary

KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas, many powerful tools
available
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Outline

ntroduction to Machine Learning and
Data Mining: Techniques overview

Rule learning

earning: Propositionalization
ata mining
earning: Wordification



Learning a classification model from

75

contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision tree learning and pruning

Top-down construction of decision trees
Tree pruning to avoid data overfitting
Pruned trees are

less accurate on training data

O O O O O
more accurate o in classifying unseen data 5

tear prod.

\\\wamm

reduc%9/

NONE

[N=12,S+H=0]

SOFT

[S=5,H+N=1] myopg’

HARD

[H=3,S+N=2]

\hypermetrope

NONE
[N=2, S+H=1]
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Learning a classification model
from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
01 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE

lenses=NONE « tear production=red

Data Mining
tear prod.
reduced/ Ni)rmal
NONE astigmatism

no/

SOFT

myope /

HARD

spect. pre.

i hypermetr:

lenses=NONE <« tear production=normal AND astigmatism=yes AND
spect. pre.=hypermetrope

lenses=SOFT <« tear production=normal AND astigmatism=no

lenses=HARD <« tear production=normal AND astigmatism=yes AND

spect. pre.=myope
lenses=NONE «
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Learning decision trees
Survey data

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male ves no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no
single
0.600
5.0
Sex
male /hﬂgle
1.000 .
3.0




Transforming trees to rules:
Survey data

LI

Education Marital Status Sex Has Children | Approved AND
primary single male no no THEN
primary single male yes no
primary married male no yes _

university divorced female no yes IF

university married female yes yes AND
secondary single male no no THEN
university single female no yes

secondary divorced female no yes [F

secondary single female yes yes N

secondary married male yes yes THEN
primary married female no yes

secondary divorced male yes no I F

university divorced female yes no AND

secondary divorced male no yes PHEN
IF

AT

THEN

MaritalStatus

Sex = femal
Approved =

MaritalStat
Sex = male
Approved =

MaritalSta
Approved =

Marital3Stat
HasChildren
Approved =

Maritalstat
HasChildren
Approved =

single
L=
yes

us = single

tus married

yes
us = diveorced
= 5

e}

s = divorced

80

yas (219) na (V5]
| |

ves (09) no (35)
| |

veas (4/9) no (095
| |

yes (09) no (2/8)
| |

yes (3/9) no (O/5)




Pruning classification rules:
Survey data

Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes
[ MaritalStatus

THEN Approved = yes

LI Sex

female

THEN Approved = yes

[F e

THEN Approved =

DEFAULT

= male

no

Approved =

LI
AND
THEN
IF
AMND
THEN

=
i
=

ANC
THEMN

IF
AN
THEN

marri

ves

MaritalStatus

Sex = fema
Approved =

MaritalSta
Sex = male
Approved =

MaritalSta
Approved =

Maritalsta
HasChildre
Approved =

Maritalsta

HasChildre
Approved =

e

Tus =

ves (4/9)

single
le
yes

single

tus married
yes

tus = diveorced
n = 5
e}

cCus =

n no
Ves

R

yas (219)

na (V5]

81

ves (09)

no (35)

ves (4/9)

no (VS)

yes (09)

o (2/5)

yes (39)

na (/5]

yas (6/9)

yeas (39)
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Covering algorithm for binary classification
problems (AQ, Michalski 1969,86)

Given examples of 2 classes C., C

for each class Ci do -
— EiI := Pi U Ni (Pi pos., Ni neg.) + 4
— RuleBase(Ci) := empty e T

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

- add R to RuleBase(Cl)
« delete from Pi all pos. ex. covered by R
— until Pi = empty



Covering algorithm

Positive examples

Negative examples
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
1 Negative examples

Y
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
1 Negative examples

Y
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
y Negative examples

QY

Rule2: Cl=+ « Cond8 AND Condé6

86
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| earn-one-rule as heuristic search:
Survey data

Approved = yes «—

Approved = yes — Approved = yes «—

Has children = no Sex = male
Approved = yes « Approved = yes —
Has children = yes Sex = female
Approved = yes «
Sex = female
Has children = no Approved = yes «
Sex = female
Approved = yes «— Approved = yes — mapita| status=divorced

Sex = female Sex = female
Has children =yes  Marital status = single



88

| earn-one-rule as heuristic search:
Survey data

Approved = yes «— [9+,5-] (14)

Approved = yes «
Sex = male

Approved = yes « Approved = yes «— [3+,4—] (7)

Has children = yes Sex = female

[3+,3-1(6) [o+1=1()

Approved = yes «—
Has children = no
[6+,2—] (8)

Approved = yes «
Sex = female
Has children = no Approved = yes «

Sex = female

Approved = yes «— Approved = yes < marital status=divorced
Sex = female Sex = female

Has children =yes  Marital status = single
[2+9O_] (2)
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Rule evaluation measures

« Evaluation measures for rules Cl «+— Cond

— aimed at maximizing classification accuracy

— minimizing Error = 1 — Accuracy

— avoiding overfitting
« EXxpected accuracy/precision: A(R) = p(Cl|Cond)
* Traded off measures:

— Relative accuracy/precision:. RAcc(Cl « Cond) = p(Cl | Cond) — p(Cl)
trade-off against the “default” accuracy of rule

(e.g., 68% accuracy is OK if there are 20% examples of that class in the
training set, but bad if there are 80%)

— Weighted relative accuracy: WRAcc(R) = p(Cond).(p(Cl | Cond) - p(Cl))
trades off coverage and relative accuracy

— Accuracy gain: AG(R’,R) = p(CI | NewCond) - p(CI | CurrentCond)
Increase in expected accuracy after rule specialization



Ordered set of rules:
If-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
Instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
Interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
ECUI‘)

90
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Seqguential covering algorithm

RuleBase := empty
EEcur;: EE
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., = E., - {examples covered and correctly

cur cur

classified by R} (DELETE ONLY POS. EX.!)
— until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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| earn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
ECUI‘:: E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., := E., - {all examples covered by R}

cur cur

(NOT ONLY POS. EX.))
until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E

CUI‘)
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| earn-one-rule:
Beam search in CN2

 Beam search in CN2 learn-one-rule algo.:

— construct BeamsSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R ;= Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head



Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification

Best performing rule learning algorithm: Ripper

JRIip implementation of Ripper in WEKA, available
In ClowdFlows

94
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Covering algorithm for multiclass learning
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cv ]

for each class Ci do v+ || -
— EI:= P1 U Ni (Pi pos., Ni neg.) + 4|
— RuleBase(Ci) := empty e T

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

- add R to RuleBase(Cl)
« delete from Pi all pos. ex. covered by R
— until Pi = empty
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Multi-class learning:
One-against-all learning strategy
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Fig. 10.4: The six binary learning problems that are the result of one-against-all
class binarization of the multiclass dataset of Figure 10.2.



CN2 rule learner in Orange

‘& CN2 Rule Induction ? ¥
Name
CN2 rule inducer
Rule ordering Covering algorithm
(® Ordered (® Exdusive
ceu O Unordered O Weighted ¥: 0.70 %
..
Rule search
CN2 Rule Induction A e = =
Beam width: 5 is
Rule filtering
Minimum rule coverage: 1S
Maximum rule length: 5 j&
Statistical significance —Ta
L Gefaut o): 100 i
L] l(ipe::nvte a’;?‘iﬁmm 1.00 &
% Apply Automatically

? B




Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod.  Lenses
o1 17 myope no reduced NO 3
02 23 myope no normal YES SubgrOU p D|SCOVe I’y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO
06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO
019-023 o
024 56 hypermetrope yes normal NO

Class NO

« A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

« SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant

98
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Classification versus Subgroup Discovery

« Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

« Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
 large subgroups (high target class coverage)
 with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery




Subgroup discovery In
High CHD Risk Group Detection

Input: Patient records described by anamnestic,
laboratory and ECG attributes

Task: Find and characterize population subgroups
with high CHD risk (large enough, distributionaly
unusual)

From best induced descriptions, five were selected by the expert
as most actionable for CHD risk screening (by GPSs):

high-CHD-risk « male & pos. fam. history & age > 46
high-CHD-risk «— female & bodymassindex > 25 & age > 63
high-CHD-risk « ...
high-CHD-risk « ...
high-CHD-risk « ...

(Gamberger & Lavrac, JAIR 2002)



Subgroup discovery:
Survey data

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Approved = yes «— Sex = female
Approved = yes «— Marital status = married

Approved = yes «— Marital status = divorced & Has children = no

Approved = yes < Education = university

Selected rules discovered by Apriori-SD subgroup discovery algorithm.

102



Subgroup discovery: 108
LE MaritalStatus single
Education Marital Status Sex Has Children | Approved AND Sex = female yas (2/9) na (0/5)
primary single male no no THEN Approved = yes | |
primary single male yes no
primary married male no yes _ e+ . ,
university divorced female no yes IF MaritalStatus = s lngl = res (0/9) no (3/5)
university married female yes yes AND Sex = male ¥es -
secondary single male no no THEN Approved = no | |
university single female no yes
secondary dn.rorced female no yes [F MaritalStatus married ves (4/9) no (VS)
secondary single female yes yes N | |
secondary married male yes yes THEN Approved = yes
primary married female no yes
secondary divorced male yes no [F MaritalStatus = divoerced
university divorced female yes no AND HasChildren = yes yes (09) no (2/8)
secondary divorced male no yes THEN Approved = no | |
IF MaritalStatus = divorced
AND HasChildren = no yes (3/9) no {0/5)
THEM Arrnratrad = wao | |
IF MaritalStatus = married yes (4/9) no (0/5)
THEN Approved yes RN
IF MaritalStatus = divorced ves (3/9) no (0/6)
AND HasChildren = no | =
THEN Approved ves
yves (6/9) I no (1/5)
IF Sex = female | N 'ﬁﬁﬂia |
THEN Approved ye
IF  Education = university yes (3/9) no (1/5)
THEN Approved yes | NNZ
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

e Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n_+1) / (n,_.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
P(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)

106
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CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set

« Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
In all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
« Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1-0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0
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Subgroup Discovery

Rulel: Cl=+ « Cond6 AND Cond2

Positive examples Negative examples

1.0

1.0
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 30 1.0 1.0

1.0 1.0 1.0 1.0

1.0
1.0 1.0
1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1-0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0



CN2-SD: Weighted WRAcc Search
Heuristic

« Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl «<— Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

Increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRAcc(Cl « Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N’ )
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM
Platform

* Orange data mining toolkit
— classification and subgroup
discovery algorithms
— data mining workflows

— visualization

D_fibr=>4 20 ecghlv=na -+ class=emb
D_chol=c=6.90 D_fibr=>4.20 hypo=no -> class=emb
[_age=366.00 fthiz=pes -» class=emb

(163 [_age=»B6.00 D_chol=<=6.90 > class=emb

« SD Algorithms in Orange
= SD (Gamberger & Lavrac, JAIR 2002)
= Apriori-SD (Kavsek & Lavrac, AAlI 2006)
= CN2-SD (Lavrac et al., IMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery
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Outline

ntroduction to Machine Learning and
Data Mining: Techniques overview

Rule learning

earning: Propositionalization
ata mining
earning: Wordification
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Relational Data Mining
(Inductive Logic Programming) task

customer
ID [Zip [S [So Il [A[CI[Re .
/ x|t jcome Befub |5 knowledge discovery
/ 3478(34677|m |si (60-70|32[me |nr from data
3479|43666|f |ma|80-90|45|\nm|re
/ order . ..

e [ T [ ficae: Relational Data Mining
3478 [2140267(12  \ |regular |cash
3478 3446778|12 express [check
3478 4728386|17 regular |check
3479 323344417 xpress |credit
M9 [3a7ss612 kim credit model, patterns, ...

store

Store ID|Size [Type Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational data mining

ILP, relational learning,
relational data mining

— Learning from complex
multi-relational data

customer
ID |Zip |S |So|ln |A|CI |Re
/ €X(S¢ \come [gelyb |Sp

3478|34677|m |si |60-70)32|me nr
347943666/ |ma/80-90|45(nmire

/ order
Customer [Order |Store |Delivery [Paymet
D D D) [Mode * [Mode

3478 2140267(12 regular
3478 344677812 express
3478 472838617 regular
umn 3233444)17 Xpress
3479 347588612 gular

cash

check
check
credit
credit

\

17

large (indep

store
Store ]D\Size ‘Type |Location
12 small |franchise|city

rural

Relational representation of customers, orders and stores.




Relational data mining

customer

* |LP, relational learning,
relational data mining J 7 el

— Learning from complex

L

347943666/ |ma/80-90|45(nmire

multi-relational data Mutagenesis A —
g 1D 1D D \ Mode  |[Mode

3478 2140267(12 regular |cash
378 3446778|12 express |check
3478 4728386|17 regular  |check

umn 3233444/17 xpress  |credit
3479 347588612 ar
store

— Learning from complex
structured data: e.qg.,
molecules and their

Store ]D\Size ‘Type |Location

biochemical properties

small |franchise|city
large indep  |rural

12
17

Relational representation of customers, orders and stores.
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Sample problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

Lo HgooHR

ot

L

5. |=ﬂl=lui
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RDM knowledge representation
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
11 cl circle 1 tl TRUE
12 c2 hexagon 1 t2 TRUE
13 c3 triangle 1
14 c4  rectangle 3 t6 FAL SE

T
CAR "TRAIN SHAPE LENGTH ROOF WHEELS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2
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ER diagram for East-West trains




Relational data mining

« Relational data mining is characterized by using
background knowledge (domain knowledge) in the
data mining process

« Selected approaches:

— Inductive logic programming - ILP (Muggleton, 1991;
LavraC & Dzeroski 1994), ...

— Relational learning (Quinlan,1993)

— Learning in DL (Lisi 2004), ...

— Relational Data Mining (Dzeroski & Lavrac, 2001),

— Statistical relational learning (Domingos, De Raedt...)
— Propositionalization approach to RDM (Lavrac et al.)



Our early work:
Semantic subgroup discovery

* Propositionalization approach: Using relational

subgroup discovery in the SDM context

— General purpose system RSD for Relational
Subgroup Discovery, using a propositionalization
approach to relational data mining

— Applied to semantic data mining in a biomedical

application by using the Gene Ontology as background
knowledge in analyzing microarray data

(Zelezny and Lavra¢, MLJ 2006)



Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  [rural

Relational representation of customers, orders and stores.
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Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D Dy [Mode ™ |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

1. constructing
relational features

2. constructing a
propositional table

124

fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
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Relational Data Mining through

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1
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fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I

>

model, patterns, ...
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Relational Data Mining through
Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  [rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

f1 | £2 | £3 | £4 | £5 | £6 fn
gl 10 (o1 )11 y0 {01011
g2l 01 (1011 y0 {00110
T R U VI 1
gt L1 |10 {1t oo 1j1)1]0
gh |11 (1o oyl y0o (11010
L I IV I
L /2 S A I A
g |00 (oo yo o {1y )pLyoyo
gl Lyo |11t jop o010l
target (A) :-
‘Doctor’ (A), ’Italy’(A).
target (A) :-
Public’ (A), ’Gold’ (A).

target (A) :-
’Poland’ (A),

target(A) :-—
‘Germany’ (A),

target(A) :-—
‘Service’ (A),

’Deposit’(A), *Gold’(A).

’Insurance’ (A).

’Germany’ (A) .

patterns (set of rules)
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Sample ILP problem:
East-West trains
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Relational data representation

o H,. 2o HaTooo

LOAD CAR OBJECT NUMBER

TRAIN_TABLE

TRAIN EASTBOUND

11 cl circle 1 tl TRUE
12 c2  hexagon 1 t2 TRUE
13 c3  triangle 1

14 ¢4 rectangle 3 t6 FAL SE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
(o} tl rectangle long none 2
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Propositionalization in a nutshell

o e : . oo‘ "T = iw ‘ w ;

Propositionalization task

Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),

1BC (Flach and Lachiche 1999), ...

LOAD CAR OBJECT NUMBER

11 cl circle
[2 c2  hexagon

triangle

rectangle

TRAIN_TABLE

TRAIN EASTBOUND I

tl TRUE
t2 TRUE

t6 FAL SE

CAR TRAIN SHA PE LENGTH ROOF  WHEELS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2
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Propositionalization in a nutshell

_ .. . _ TRAIN_TABLE
Main propositionalization step: . .. «& e e
first-order feature construction |, ; ... . = — I
13 c3  triangle 1 . .
14 ¢4 rectangle 3 t6 EAL SE

f1(T):-hasCar(T,C),clength(C,short).

fZ(T) ‘-hasCa r(T,C), hasLoad(C, L), CAR TRAIN SHAPE LENGTH ROOF WHEELS
. cl tl rectangle short none 2
|OaC|Sha DE(L,CII’C|e) c2 tl rectangle long none 3 I
. c3 tl rectangle short peaked 2
f3 (T) CNEETY c4 tl rectangle long none 2

Propositional learning:

tH(T) < f1(T), f4(T) PRQP@SIITIONNL TRAIN_TABLE
train(T) f1(T)  f2(T) £3(T)  f4(T) £5(T)
t1l t t f t t
Relational interpretation: :2 ]f : : ]f ]f
t f t f f

eastbound(T) < t4
hasShortCar(T),hasClosedCar(T).




RSD algorithm: -
Relational Data Mining in Orange4WsS

« Service for propositionalization through efficient

first-order feature construction (Zelezny and Lavrad,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
* subgroup discovery using CN2-SD
mutaagenic(M) « feature121(M), feature235(M)

Mutagenesis

<
lecule 3
— \&

V g ) - ‘ View table
Load data ‘. | / ' ‘ - * g
. > : ~ { ] - V_‘- -,,
D[ Propositionalizat Rank.attribut Serialize ExampleTable AP SD View rul
Load backgr. knowledge . G ——
W~
Serialize ExampleTable2 ~ CN2-5D
\ 131
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RSD algorithm

Efficient propositionalization can be applied to
Individual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

featurel21(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- featurel21(M), feature235(M)
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Outline

* Introduction to Machine Learning and

Data Mining: Techniques overview

* Rule learning

Relational

j> Semantic ¢

 Relational

earning: Propositionalization
ata mining
earning: Wordification
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What is Semantic Data Mining
SDI\/IN__:,tgs‘_Ig_d_efinition

[ ontologies }

target (A) :-
’Doctor’ (A), ’Italy’(d).

annotations, dSema_nt_m mt?del,
mappings ata mining | patterns
target (A) :-
Given: ’Service’ (A), ’Germany’(A).

= — = transaction data table, relational database,
[ data } text documents, Web pages, ...

= one or more domain ontologies
Find: a classification model, a set of patterns




Semantic data mining

customer

So|ln |A|C] [Re
X |5t |come|gelyb (P

* ILP, relational learning,
relational data mining o o

— Learning from complex _ S
multi-relational data LIRSS

— Learning from complex
structured data: e.qg.,
molecules and their

| ow

ord
Customer [Order |Store |Delivery [Paymet
D D D) [Mode * [Mode

a8 [240267(12  \ Jregular |cash
378 3446778|12 express |check
3478 |4728386/17  Jregular |check
370 |3233444)17 &ichres credit

3479 347588612 gular  |credit

store

Store ]D\Size ‘Type |Location

biochemical properties

small |franchise|city
large indep  |rural

12
17

— Learning by using domain
knowledge in the form of
ontologies = semantic data
mining

Relational representation of customers, orders and stores.

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652
amino acid @ 60:00042401
biosynthesis biogenic amine synthesis



Using domain ontologies in

Semantic Data Mining
Using domain ontologies as background knowledge, e.qg.,

using the Gene Ontology (GO)

* GO Is a database of terms, describing gene sets in terms

of their
— functions (12,093)
— processes (1,812)
— components (7,459)

* Genes are annotated
to GO terms

« Terms are connected
(Is_a, part_of)

* Levels represent
terms generality

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652
amino acid
biosynthesis

@ co:00042401
biogenic amine synthesis
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What is Semantic Data Mining

* Ontology-driven (semantic) data mining is an
emerging research topic

« Semantic Data Mining (SDM) - a new term
denoting:
— the new challenge of mining semantically annotated

resources, with ontologies used as background
knowledge to data mining

— approaches with which semantic data are mined
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process .. . ... componeen | ke p—
1812 cellular components / L L L
7459 molecular functions T EE—— ‘ s

biopolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to membrane peptidase activity

biopolymer catabolism macromolecule catabolism protein metabolism cellular catabolism

Joint work with
lgor Trajkovski
and Filip Zelezny
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations e . Pl e
between genes, can be viewed 7 | |
as generalisations of individual oot prcess. ol proces -
genes




Semantic subgroup discovery with RSD

. Take ontology terms represented as logical facts in Prolog, e.g.
component (gene2532, 'GO:0016020") .
function (gene2534, 'GO:0030554") .
process (gene2534, 'G0O:0007243") .
interaction (gene2534,gened4803) .

. Automatically generate generalized relational features:

f(2,A) :—component (A, 'GO:0016020") .
f(7,A):—-function (A, 'GO:0030554") .

(ll A) :—process (A, 'GO:0007243") .

£

224 ,A) :— interaction(A,B), function(B,'GO:0016787"),
component (B, 'GO:0043231") .

. Propositionalization: Determine truth values of features

. Learn rules by a subgroup discovery algorithm CN2-SD



Step 2: RSD feature construction

Construction of first order features, with support > min_support

f(7,A):-function(A,'G0O:0046872").
f(8,A):-function(A,'G0O:0004871").
f(11,A):-process(A,'G0O:0007165").
f(14,A):-process(A,'G0:0044267").
f(15,A):-process(A,'G0O:0050874").
f(20,A):-function(A,'G0O:0004871"), process(A,'G0O:0050874").
f(26,A):-component(A,'G0:0016021".
f(29,A):- function(A,'G0:0046872'), component(A,'G0O:0016020"
f(122,A):-interaction(A,B),function(B,'G0:0004872").
_—" 1(223,A):-interaction(A,B),function(B,'G0:0004871"),
process(B,'G0O:0009613").
f(224,A):-interaction(A,B),function(B,'G0:0016787"),
component(B,'G0O:0043231").

existential




Step 3: RSD Propositionalization

diffexp g1 (gene64499) random gl (gene7443)
diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (genel052) random g4 (gene9657)
diffexp g5 (gene6036) random g5 (genel9679)
f1 | £2 | £3 | £4 | £5 | f£6 fn

gl 1 0 0 1 1 1 0 0 1 0 1 1
g2 | 0 1 1 0 1 1 0 0 0 1 1 0
g3 | 0 1 1 1 0 0 1 1 0 0 0 1
g4 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1 0 0 1 0 1 1 0 1 0
gl 0 0 1 1 0 0 0 1 0 0 0 1
g2 1 1 0 0 1 1 0 1 0 1 1 1
g3 0 0 0 0 1 0 0 1 1 1 0 0
g4 1 0 1 1 1 0 1 0 0 1 0 1




Step 4: RSD rule construction with CN2-SD

—
£1 | £2 | £3| £4 | £5 | £6 fn
gtl1lolo]l1]|1]1 1
g2lol1|l12]o]|1]1 0
g3lol1|l12]l2]|0]o0 1
ga|l 1|1 l12]o0o]|1]1 0
gs| 11 1]o]o]1 0
gtlolo|l1]l21]|0]o0 1
g2l 1 l1lo]lo|1]1 1
g3lolololo]|1]o0 0
ga|l 1 lol2]l2]|2]o0 1

Over-
expressed
IF
f2 and f3
[4,0]

diffexp(A) :- interaction(A,B) & function(B,'G0O:0004871")



144

Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1-0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0 1.0
1.0

1.0
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0
1.0

1.0

1.0 .
1.0 1.0

1.0

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0

1.0 39 1.0 1.0

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0 1.0

1.0
1.0 .
1.0 1.0

1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy



) .

Relational
Semantic o

Relational
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Outline

ntroduction to Machine Learning and
Data Mining: Techniques overview

Rule learning

earning: Propositionalization
ata mining
earning: Wordification



Propositionaization through Wordification:
Motivation

* Develop a RDM technique inspired by text
mining

* Using a large number of simple, easy to
understand features (words)

* Improved scalability, handling large datasets

* Used as a preprocessing step to propositional
learners



Background: Data mining

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, clusters,

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns



Data mining: Task reformulation

Person Young Myope Astigm. euced tea_ Lenses
o1 1 1 0 1 NO
02 1 1 0 0 YES
03 1 1 1 1 NO
04 1 1 1 0 YES
05 1 0 0 1 NO

06-013
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
017 0 1 0 1 NO
018 0 1 0 0 NO

019-023 .
024 0 0 1 0 NO

Binary features and class values



Text mining:
Words/terms as binary features

Document Wordl Word?2 WordN Class
dl 1 1 0 1 NO
d2 1 1 0 0) YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
di5 0 0 1 1 NO
d16 0) 0 1 0 NO
d17 0) 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction fodz | .. y .
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Text Mining

* Feature construction
— StopWords elimination
— Stemming or lemmatization
— Term construction by frequent N-Grams construction
— Terms obtained from thesaurus (e.g., WordNet)

e BoW vector construction

* Mining of BoW vector table
— Feature selection, Document similarity computation
— Text mining: Categorization, Clustering, Summarization,



Stemming and Lemmatization

 Different forms of the same word usually

problematic for text data analysis

— because they have different spelling and similar meaning (e.qg.
learns, learned, learning,...)

— usually treated as completely unrelated words

« Stemming Is a process of transforming a word Into
Its stem
— cutting off a suffix (eg., smejala -> smej)

« Lemmatization is a process of transforming a
word into Its normalized form

— replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)



Bag-of-Words document

representation

|I"'- e a—— -
Journal of Artificial Intellipence
TATR is arefereed journal, cover £as
of Artificial Intelli is distributed

e MtamWnlmn&‘\_—

of the jowrndl is also published by IMorgan
Eaufrnan....

free of charge oy

L R s == i == R - T VL R

learning
journal
intelligence
text

agent

internet
webwatcher

perls

volume




Word weighting

 In bag-of-words representation each word is represented
as a separate variable having numeric weight.

* The most popular weighting schema is normalized word
frequency TFIDF:
N

tfidf (w) = tf. log( ” (W))

— Tf(w) — term frequency (number of word occurrences in a

document)

— Df(w) — document ffequency (number of docyyments containing the
word)

— N — number of all documents

— Tfidf(w) — relative importance of the word in the document

The word is more important if it appears The word is more important if it
several times in a target document appears in less documents



Cosine similarity between
document vectors

« Each document D is represented as a vector of
TF-IDF weights

« Similarity between two vectors is estimated by the
similarity between their vector representations
(cosine of the angle between the two vectors):

D Xy,
I

Similarity (D,,D,) =

RS



Wordification Methodology

e Transform a relational database to a document
COorpus

e For each individual (row) in the main table, concatenate
words generated for the main table with words generated
for the other tables, linked through external keys

—_—

Feature vector

T —

—t

E

Feature vector |

Feature vector |

Feature vector

d;: .

RN




Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction fodz | .. y .
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Wordification Methodology

One individual of the main data table in the
relational database ~ one text document

Features (attribute values) ~ the words of this
document

Individual words (called word-items or witems)
are constructed as combinations of:

‘table namel|_|attribute name|_{value]

n-grams are constructed to model feature
dependencies:

witemq |_|witems|_ ... _|lwitem,,]



Wordification Methodology

e Transform a relational database to a document
cCorpus

e Construct BoW vectors with TF-IDF weights on
words

(optional: Perform feature selection)

o Apply text mining or propositional learning on BoW
table



Wordification

CAR
TRAIN carlD  shape roof wheels train
trainlD  eastbound cll rectangle none 2 tl
t1 east cl2 rectangle peaked 3 tl
tS west ¢Sl rectangle none 2 t5
c32 hexagon  flat 2 tS

t1: [car_roof none, car_shape rectangle, car_ wheels 2,
car_roof none_ car_shape rectangle,

car_roof none_car wheels 2,

car_shape rectangle car wheels 2,

car_roof peaked, car_shape_rectangle,

car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3,

car_shape rectangle car wheels 3], east



Wordification

t1: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__ car_shape rectangle, car_roof none_ car wheels 2,
car_shape rectangle car wheels 2, car_roof peaked, car_shape rectangle,
car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3, car_shape rectangle car wheels 3], east

t5: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__car_shape rectangle, car_roof none_ car _wheels 2,
car_shape rectangle car wheels 2, car_roof flat, car shape hexagon,
car_wheels_2, car_roof flat car _shape_ hexagon,
car_roof flat car wheels 2, car_shape hexagon _car wheels 2], west

TF-IDF calculation for BoW vector construction:

car_shape car_roof car_wheels_3 car_roof_peaked_ car_shape_rectangle class
_rectangle peaked car_shape _rectangle _car_wheels_3
tl | 0.000 0.693 0.693 0.693 0.693 east

5 | 0.000 0.000 0.000 0.000 0.000

weslt



TF-IDF weights

* No explicit use of existential variables In
features, TF-IDF instead

* The weight of a word indicates how relevant is
the feature for the given individual

 The TF-IDF weights can then be used either for
filtering words with low importance or for using
them directly by a propositional learner (e.g. J48)




Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)

— first applying Friedman test to rank the algorithms,

— then post-hoc test Nemenyi test to compare multiple
algorithms to each other



Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)

MEAsurRE = CA MEASURE = RUN-TIME
CD =1.77 CD = 1.77
——— ——
4 3 2 1 4 3 2 I
I I I | I I I
Wordification (1.9) I— Wordification (1.0)
AlephFeaturize (2.5) AlephFeaturize (2.9)
RSD (2.7) RSD (3.0)
RelF (2.9) RelF (3.1)



EXperiments

Domain Algorithm HME-Accuracy[%]  J4B-AUC  Run-time[s]
Trainz Wordification 35.00 0.51 11
without position RelF 65,00 (.65 104
RSD 65,00 (.68 0.53

AlephFeaturize T5.00 .82 0.40

Trains Wordification 05, M 0.51 12
RelF 65,00 (.62 1.06

RSD 50,00 0.53 0.47

A lephFeaturize 85.00 0.74 0.38
Mutagenesis42  Wordification 97.62 0,93 34
RelF 80,935 0.59 2.11

RSD o762 0.93 2.63

A lephFeaturize o762 0.93 2.07
Mutagenesis 188 Wordification 9574 0.90 LG5
RelF 71553 0.79 1.76

RSD 04.15 0.91 [0.10

AlephFeaturize 8723 (.88 19.27

IMDB Wordification 8434 0.79 1.23
RelF 79.52 0.73 3249

RSD 73.49 0.47 4.33

A lephFeaturize 73.49 0.47 4.96
Carcinogenesis  Wordification 6109 062 1.7%9
RelF 54.71 (.53 644

RSD 58.05 (.56 9.29

A lephFeaturize 55.32 0.49 [04.70

Financial Wordification B6.75 0.48 4.65
RelF 97.00 0.91 260.93

RSD 86.73 (.48 333.68

A lephFeaturize 86.73 (.48 325.86




Use Case: IMDB

IMDB subset: Top 250 and bottom 100 movies
Movies, actors, movie genres, directors, director genres

Wordification methodology applied
Association rules learned on BoW vector table



Use Case: IMDB

goodMovie <— director_genre_drama, movie_genre_thriller,
director_ name_AlfredHitchcock. (support: 5.38% Confidence: 100.00%)

movie_genre_drama <— goodMovie, actor_name RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock <« actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director name_StevenSpielberg <- goodMovie, movie_genre_adventure,
(Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.



Summary

— Wordification methodology

— Allows for solving non-standard RDM tasks, including RDM
clustering, word cloud visualization, association rule
learning, topic ontology construction, outlier detection, ...

st Word clowd

% ¢ .

Cop e % Cars_Position_2
X Bty 2 R\
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Summary: From machine learning to

Semantic Data Mining

Knowledge Discovery

/J Data Mining]

Relational Subgroup Discovery

\

Semantic Web

Ontologies

171



