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Data Mining and Knowledge Discovery:

Logistics and lecturers

2

Contacts:  http://kt.ijs.si/petra_kralj/dmkd3.html

Nada Lavrač: nada.lavrac@ijs.si
– Introduction: ML and DM, decision tree learning, rule learning

– Relational learning: relational learning, semantic data mining

– Advanced topics: text mining, clustering, outlier detection

Petra Kralj Novak: petra.kralj.novak@ijs.si
– classification, evaluation, regression + practice with Orange in Scikit

– association rules, clustering + practice with Orange

– neural networks hands-on with Keras

Martin Žnidaršič: martin.znidarsic@ijs.si
– Advanced topics: SVM, neural networks, ensemble learning, active learning 

http://kt.ijs.si/petra_kralj/dmkd3.html
mailto:nada.lavrac@ijs.si
mailto:petra.kralj.novak@ijs.si
mailto:martin.znidarsic@ijs.si


ICT3 Course Schedule – 2020/21

ICT3 – for materials, see http://kt.ijs.si/petra_kralj/dmkd3.html

for lectures, use IPS ZOOM link
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10.11.2020 15:00 - 17:00 prof. dr. Nada Lavrač 

17.11.2020 15:00 - 17:00 doc. dr. Petra Kralj Novak 

24.11.2020 15:00 - 17:00 prof. dr. Nada Lavrač 

1.12.2020 15:00 - 17:00 doc. dr. Petra Kralj Novak 

8.12.2020 15:00 - 17:00 doc. dr. Martin Žnidaršič

15.12.2020 15:00 - 17:00 doc. dr. Petra Kralj Novak, doc. dr. Martin Žnidaršič

22.12.2021 15:00 - 17:00

doc. dr. Petra Kralj Novak 

- Oral exam

- Using Petra’s personal ZOOM link

19.1.2021 15:00 - 18:00

prof. dr. Nada Lavrač 

- Seminar presentations

- Using IPS ZOOM link

http://kt.ijs.si/petra_kralj/dmkd3.html
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Data Mining and Knowledge Discovery: 

Credits and Coursework

Course requirements (10 ECTS credits):

• Attending lectures and selected hands-on exercises 

• Oral exam (40%) 

• Seminar (60%):

– Data analysis of your own data

– …. own initiatives highly recommended …
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Data Mining and Knowledge Discovery: 

Credits and Coursework

Exam: Oral exam - Theory 

Seminar: topic selection + results presentation

• One hour available for seminar topic discussion – one page 

written proposal defining the task and the selected dataset

• Deliver written report + electronic copy (4 pages in 

Information Society paper format, instructions on the web) 

– Report on data analysis of own data needs to follow the  

CRISP-DM methodology

– Presentation of your seminar results (15 minutes each: 10 

minutes presentation + 5 minutes discussion)



• Open source machine learning and data 

visualization toolbox

– https://orange.biolab.si/

– http://file.biolab.si/datasets/

– https://www.youtube.com/channel/UClKKWBe2SC

AEyv7ZNGhIe4g

• Interactive data analysis workflows 

• Visual programming 

• Based on numpy, scipy and scikit-learn

• GUI: Qt framework
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https://orange.biolab.si/
http://file.biolab.si/datasets/
https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g


Hands-on exercises 

– Open source machine learning and data visualization

– Interactive data analysis workflows with a large toolbox

– Visual programming 

– Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, 

Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, 

Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining 

Toolbox in Python, JMLR 14(Aug): 2349−2353.

– scikit-learn is Gold standard of Python machine learning 

– Simple and efficient tools for data mining and data analysis

– Well documented

– Pedregosa et al. (2011) Scikit-learn: Machine Learning in Python, 

JMLR 12, pp. 2825-2830.

– Neural-network library written in Python.

– Chollet, F. et al. (2015) "Keras"
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http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://orange.biolab.si/
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Data Mining and Knowledge Discovery: 

Supporting material

• Supporting material on videolectures.net: 

Seminar: AI for Industry and Society, Ljubljana 2020 

– http://videolectures.net/AIindustrySeminar2019/

– Marko Robnik Šikonja: Artificial Intelligence: Techniques, Trends 

and Applications

– Nada Lavrač: Data Science, Machine Learning and Big Data: 

Current trends

– Blaž Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AIindustrySeminar2019/


Machine Learning and Data Mining

• Machine Learning (ML) – computer 

algorithms/machines that learn predictive 

models from class-labeled data

• Data Mining (DM) – extraction of useful 

information from data: discovering 

relationships and patterns that have not 

previously been known, and use of ML

techniques applied to solving real-life data 

analysis problems

• Knowledge discovery in databases (KDD) –

the process of knowledge discovery

9
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Data Mining and KDD

• Buzzword since 1996

• KDD is defined as “the process of identifying 
valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” *

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11



11

KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

• KDD process involves several phases:

• data preparation

• data mining (machine learning, statistics)

• evaluation and use of discovered patterns

• Data mining is the key step, but represents only 
15%-25% of the entire KDD process
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Big Data

• Big Data – Buzzword since 2008 (special 

issue of Nature on Big Data)

– data and techniques for dealing with very 

large volumes of data, possibly dynamic 

data streams

– requiring large data storage resources, 

special algorithms for parallel computing 

architectures.



The 4 Vs of Big Data

13
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Data Science

• Data Science – buzzword since 2012 when 

Harvard Business Review called it "The 

Sexiest Job of the 21st Century"

– an interdisciplinary field that uses scientific 

methods, processes, algorithms and 

systems to extract knowledge and insights 

from data in various forms, both structured 

and unstructured, similar to data mining. 

– used interchangeably with earlier concepts 

like business analytics, business 

intelligence, predictive modeling, and 

statistics.
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Machine Learning and Data Mining

data

Machine Learning

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: class labeled data

Find: a classification model, a set of interesting patterns 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

data
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Machine Learning and Data Mining

data

Machine Learning

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: class labeled data

Find: a classification model, a set of interesting patterns 

new unclassified instance classified  instance

black box classifier 

no explanation

symbolic model  

symbolic patterns 

explanation

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

data



Why learn and use black-box models

Given: the learned classification model

(e.g, a linear classifier, a deep neural network, …)

Find: - the class label for a new unlabeled instance

Advantages: 

- best classification results in image recognition 

and other complex classification tasks

Drawbacks: 

- poor interpretability of results

- can not be used for pattern analysis

classified  instancenew unclassified instance



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

Advantages: 

- use the model for the explanation of classifications of 

new data instances

- use the discovered patterns for data exploration

Drawbacks: 

- lower accuracy than deep NNs

classified  instancenew unclassified instance
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Simplified example: Learning a classification 

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Pattern discovery in Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

IF  

Tear prod. = 

reduced  

THEN   

Lenses = 

NONE 

PATTERN

Rule:
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Learning a classification model from 

contact lens data
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining



Decision tree classification model 

learned from contact lens data

nodes: attributes

arcs: values of attributes

leaves: classes



Learning a decision tree classification 

model

Search heuristics: Which attribute to test at each node in the tree ? The 
attribute that is most useful for classifying examples.

• First define a measure called entropy, to characterize the (im)purity of 
an arbitrary collection of examples

• Information gain of an attribute is measured as reduction of entropy 
of a training set S after splitting into subsets based on values of 
attribute A

23
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Entropy

• S - training set, C1,...,CN - classes

• Entropy E(S) – measure of the impurity of 
training set S


=

−=
N

c

cc ppSE
1

2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 
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Entropy

• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 

classification, as the proportion p+ of positive 

examples varies between 0  and 1
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Information gain 

search heuristic

• Information gain measure is aimed to minimize the number of tests 
needed for the classification of a new object

• Gain(S,A) – expected reduction in entropy of S due to sorting on A 

• Most informative attribute :

– Select S

– Select A to split S into S1,S2, …,Sv

– Select A, which maximizes info. Gain:  max Gain(S,A)

)(
||

||
)(),(

)(

v

AValuesv

v SE
S

S
SEASGain −= 


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Pruning of decision trees

• Avoid overfitting the data by tree pruning

• Pruned trees are
– less accurate on training data

– more accurate when classifying unseen data
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Prediction of breast cancer recurrence: 

Tree pruning
Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3  3

< 15  15 < 3  3

< 40 40

no_rec 4      rec1
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Pruned decision tree for

contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]
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Overfitting and accuracy

• Typical relation between tree size and accuracy

• Question: how to prune optimally?

0.5

0.55

0.6

0.65

0.7
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0.9
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On training data

On test data
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Avoiding overfitting

• How can we avoid overfitting?
– Pre-pruning (forward pruning): stop growing the tree e.g., 

when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)

• post pruning makes use of sub trees 

Pre-pruning

Post-pruning
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Selected decision/regression 

tree learners

• Decision tree learners

– ID3 (Quinlan 1979)

– CART (Breiman et al. 1984)

– Assistant (Cestnik et al. 1987)

– C4.5 (Quinlan 1993), C5 (See5, Quinlan)

– J48 (available in WEKA), Tree (in Orange)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA), Tree (in Orange)
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Selected decision tree learners

• Decision tree learners: Tree (in Orange)
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Selected decision tree learners

• Homework

– To prepare for the lecture of Petra Kralj Novak on 17 Nov. 2020:

– see Blaž Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AIindustrySeminar2019_zupan_data_science/

– see also YouTube tutorials on Orange

https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g

http://videolectures.net/AIindustrySeminar2019_zupan_data_science/
https://www.youtube.com/channel/UClKKWBe2SCAEyv7ZNGhIe4g


Learning a classification model

from contact lens data

Data Mining

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND astigmatism=no 

lenses=HARD ← tear production=normal AND astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

35



Classification rules model learned

from contact lens data

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND 

astigmatism=no 

lenses=HARD ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←

36



37

CN2 rule learner in Orange



Learning from Unlabeled Data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

38
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Multi-label Learning Task

Several class labels of training examples of a single Target 

class attribute

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... no ... ...

O24 56 hypermetrope no normal NONE
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Binary Classification

Binary classes 

• positive vs. negative examples of Target class

• Concept learning – binary classification and class description 

- for Subgroup discovery – exploring patterns 

characterizing groups of instances of target class

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Multi-target Classification

Multi target classification 

– each example belongs to several Target classes

Person Age Spect. presc. Astigm. Tear prod. Lenses Pilot

O1 17 myope no reduced NO NO

O2 23 myope no normal  YES NO

O3 22 myope yes reduced NO NO

O4 27 myope yes normal YES NO

O5 19 hypermetrope no reduced NO NO

O6-O13 ... ... ... ... ... ...

O14 35 hypermetrope no normal YES YES

O15 43 hypermetrope yes reduced NO NO

O16 39 hypermetrope yes normal NO NO

O17 54 myope no reduced NO NO

O18 62 myope no normal NO YES

O19-O23 ... ... ... ... ... ...

O24 56 hypermetrope yes normal NO NO
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Learning from Numeric Class Data

Numeric class values – regression analysis

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0
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Example regression problem
(see lectures of Petra Kralj Novak on 17 November 2020)

• data about 80 people: Age and Height
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Baseline numeric model (predictor)

• Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Regression tree
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Model tree
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kNN – K nearest neighbors

• Looks at K closest examples (by age) and predicts the 

average of their target variable

• K=3
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First Generation Machine Learning

• First machine learning algorithms for 

– Decision tree and rule learning in 1970s and early 1980s 

by Quinlan, Michalski et al., Breiman et al., …

• Characterized by

– Learning from data stored in a single data table

– Relatively small set of instances and attributes

• Lots of ML research followed in 1980s 

– Numerous conferences ICML, ECML, … and ML 

sessions at AI conferences IJCAI, ECAI, AAAI, …

– Extended set of learning tasks and algorithms 

addressed

49



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– Industrial standard: CRISP-DM methodology (1997)

– Since 1996 new buzzword: Knowledge discovery in 
databases (KDD) 

– KDD is defined as “the process of identifying valid, 
novel, potentially useful and ultimately understandable 
models or patterns in data.”  
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KDD Process

KDD process of discovering useful knowledge from data

• KDD process involves several phases:
– data preparation

– machine learning, data mining, statistics, …

– evaluation and use of discovered patterns

• Machine Learning (ML) / Data Mining (DM) is the key step in 
the KDD process
– performed using machine learning or pattern mining  techniques for 

extracting classification models or interesting patterns in data

– this key step represents only 15%-25% of entire KDD process



Second Generation Data Mining 

Platforms

Orange, WEKA, KNIME, RapidMiner, …

– include numerous data mining algorithms

– enable data and model visualization

– like Orange, Taverna, WEKA, KNIME, RapidMiner,  

also enable complex workflow construction 

52



Data Mining Workflows for 

Open Data Science

– Workflows are executable visual representations of 

procedures

– divided into smaller chunks of code (components) 

– organized as sequences of connected components.

– Suitable for representing complex scientific pipelines

– by explicitly modeling dependencies of components

– Building scientific workflows consists of simple operations on 

workflow elements (drag, drop, connect), suitable for non-

experts

53



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– New conferences on practical aspects of data mining 
and knowledge discovery: KDD, PKDD, …

– New learning tasks and efficient learning algorithms:
• Learning descriptive patterns: association rule learning, 

subgroup discovery, …

• Learning predictive models: Bayesian network learning,, 
relational data mining, statistical relational learning, SVMs, …



Subgroup Discovery

• Data transformation: 

– binary class values (positive vs. 

negative examples of Target 

class) 

• Subgroup discovery: 

– a task in which individual 

interpretable patterns in the 

form of rules are induced from 

data, labeled by a predefined 

property of interest.

• SD algorithms learn several 

independent rules that 

describe groups of target 

class examples

– subgroups must be large and 

significant 

1

2

3

Class A Class B

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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SD algorithms in Orange DM Platform

• Orange data mining 

toolkit
– classification and subgroup 

discovery algorithms 

– data mining workflows

– visualization 

• SD Algorithms in Orange

– SD (Gamberger & Lavrač, JAIR 2002)

– Apriori-SD (Kavšek & Lavrač, AAI 2006)

– CN2-SD (Lavrač et al., JMLR 2004)



Relational Data Mining 

Relational Data Mining

knowledge discovery 

from data

model, patterns, 

…

Given: a relational database, a set of tables, sets of logical

facts, a graph, …

Find: a classification model, a set of patterns



Relational Data Mining

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases



Relational Data Mining

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases

– Learning from complex 

structured data, e.g. 

molecules and their 

biochemical properties



Relational and Semantic Data Mining 

• ILP, relational learning, 
relational data mining 

– Learning from complex 

relational databases

– Learning from complex 

structured data, e.g. 

molecules and their 

biochemical properties

– Learning by using 

domain knowledge in the 

form of ontologies = 

semantic data mining



Third Generation Machine Learning

• Developed since 2010s:
– Focused on big data analytics

– Addressing complex data mining tasks and scenarios

– New conferences on data science and big data 
analytics; e.g., IEEE Big Data, Complex networks, …

– New learning tasks and efficient learning algorithms:
• Analysis of dynamic data streams, Network analysis, Text 

mining, Semantic data analysis, …

– Lots of emphasis on automated data transformation
• Propositionalization of relational data, of heterogeneous 

information networks, …

• Embedding of texts, networks, knowledge graphs, entities 
(features), … is highly popular in the last few years
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• Representation learning = Automated data transformation, 

performed on manually preprocessed data

• Transformation requires handling heterogeneous data

– Data (feature vectors, documents, pictures, data streams, …)

– Background knowledge (multi-relational data tables, networks, text 

corpora, …)

• Propositionalization:

– Multi-relational data transformation

Representation Learning 
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Propositionalization: 

Data transformation for Relational Learning

Propositionalization

Step 1

1. constructing 

relational features

2. constructing a 

propositional table
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Propositionalization: 

Data transformation for Relational Learning

Propositionalization

model, patterns, …

Machine Learning

Step 1

Step 2



Propositionalization: 

Data transformation for Relational Learning

Propositionalization

patterns (set of rules)

Subgroup discovery

Step 1

Step 2

1. construct relational 

features

2. construct  a 

propositional table
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Data transformation for Semantic Data Mining

Propositionalization

Step 1

1. constructing relational 

features

2. constructing  a 

propositional table

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

The approach: Using relational subgroup discovery in the SDM context
• General purpose system RSD for Relational Subgroup 

Discovery, using a propositionalization approach to relational data 
mining

• Applied to semantic data mining in a biomedical application by 
using the Gene Ontology as background knowledge in analyzing 
microarray data                      

Železny and Lavrac, MLJ 2006



Text mining: Viewed in propositionalization 

context: BoW data transformation

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



BoW construction: Feature weights and Cosine 

similarity between document vectors

• Each document D is represented as a vector of       

TF-IDF weights 

• Similarity between two vectors is estimated by the 

similarity between their vector representations 

(cosine of the angle between the two vectors):

)
)(

log(.)(
wdf

N
tfwtfidf =



Embeddings-based  Data Transformation 
for Text mining

• Corpus embedding, 
Document embedding, 
Sentence embedding, 
word embedding
(e.g., word2vec)

• Transforming 
documents by 
projecting 
documents into 
vectors (rows of a 
data table)

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Embeddings-based  Data Transformation 
for Text mining

• Corpus embedding, 
Document embedding, 
Sentence embedding, 
word embedding
(e.g., word2vec)

• Transforming 
documents by 
projecting 
documents into 
vectors (rows of a 
data table)

• Weights 
correspond to 
weights in the 
embedding layer of 
a neural network

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Embedding-based  Data Transformation 
for Text mining

• Corpus embedding, Document embedding, Sentence embedding, 
word embedding, …

• Representations of word meaning obtained from corpus statistics

• Spatial relationships correspond to linguistic relationships



Cross-domain or cross-lingual Embeddings-
based  Data Transformation for Text mining

• Aligning embedding spaces across domains or languages

• EMBEDDIA H2020 project (2019-2021) coordinated by 
Jožef Stefan Institute: Cross-lingual embeddings for 
less-represented languages in news media industry

• developing new language models for less represented 
languages

• Using advanced embedding models like GloVe and 
contextual embedding models like Bert in news analysis 
applications and in UGC commentary filtering
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Part I: Summary

• KDD is the overall process of discovering useful 

knowledge in data

– many steps including data preparation, cleaning, 

transformation, pre-processing

• Data Mining is the data analysis phase in KDD

– DM takes only 15%-25% of the effort of the overall KDD 

process

– employing techniques from machine learning and statistics

• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery

• Many application areas, many powerful tools 

available



74

Outline

• Introduction to Machine Learning and 

Data Mining: Techniques overview 

• Rule learning 

• Relational learning: Propositionalization

• Semantic data mining

• Relational learning: Wordification
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Learning a classification model from 

contact lens data
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining
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Decision tree learning and pruning

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

- Top-down construction of decision trees

- Tree pruning to avoid data overfitting

- Pruned trees are

- less accurate on training data
- more accurate o in classifying unseen data



Learning a classification model

from contact lens data

Data Mining

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND astigmatism=no 

lenses=HARD ← tear production=normal AND astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Converting decision tree to rules, and 

rule post-pruning (Quinlan 1993)

• Very frequently used method, e.g., in C4.5

and J48

• Procedure:

– grow a full tree (allowing overfitting)

– convert the tree to an equivalent set of rules

– prune each rule independently of others

– sort final rules into a desired sequence for use
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Learning decision trees
Survey data



80Transforming trees to rules:
Survey data



81Pruning classification rules:
Survey data



82

Covering algorithm for binary classification 

problems (AQ, Michalski 1969,86)

Given examples of 2 classes C1, C2

for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)

– RuleBase(Ci) := empty

– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)

• delete from Pi all pos. ex. covered by R

– until Pi = empty 

++

+

+ +

+
-

-
-

-
-

+
-
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Covering algorithm

+
+

+

+

+

+

+

+

+

++ +

+

+

+

+

+
+

+

+

+
+

+

-
-

-

-

-

-

-

-

-

--

-

-

-

-

-
-

-

-

-
-

-

Positive examples Negative examples

-



84

Covering algorithm
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Covering algorithm
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Covering algorithm

+
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Positive examples Negative examples

-

Rule1: Cl=+  Cond2 AND Cond3

Rule2: Cl=+  Cond8AND Cond6
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Learn-one-rule as heuristic search: 

Survey data

Approved = yes ←

Approved = yes ←
Has children = no

Approved = yes ←
Has children = yes

Approved = yes ←
Sex = female

Approved = yes ←
Sex = male

Approved = yes ←
Sex = female

Has children = no

Approved = yes ←
Sex = female

Has children = yes

Approved = yes ←
Sex = female

Marital status = single

Approved = yes ←
Sex = female

Marital status=divorced

...
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Learn-one-rule as heuristic search: 

Survey data

Approved = yes ←

Approved = yes ←
Has children = no

Approved = yes ←
Has children = yes

Approved = yes ←
Sex = female

Approved = yes ←
Sex = male

Approved = yes ←
Sex = female

Has children = no

Approved = yes ←
Sex = female

Has children = yes

Approved = yes ←
Sex = female

Marital status = single

Approved = yes ←
Sex = female

Marital status=divorced

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)
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Rule evaluation measures

• Evaluation measures for rules Cl ← Cond
– aimed at maximizing classification accuracy 

– minimizing Error = 1 – Accuracy

– avoiding overfitting

• Expected accuracy/precision:   A(R) = p(Cl|Cond)

• Traded off measures:
– Relative accuracy/precision: RAcc(Cl ← Cond) = p(Cl | Cond) – p(Cl)

trade-off against the “default” accuracy of rule Cl true

(e.g., 68% accuracy is OK if there are 20% examples of that class in the 
training set, but bad if there are 80%) 

– Weighted relative accuracy: WRAcc(R) = p(Cond).(p(Cl | Cond) - p(Cl))

trades off coverage and relative accuracy 

– Accuracy gain: AG(R’,R) = p(Cl | NewCond) - p(Cl | CurrentCond)

increase in expected accuracy after rule specialization
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Ordered set of rules:

if-then-else rules

• rule  Class IF Conditions is learned by first 
determining Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase 

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

• If no rule fires, then DefaultClass (majority class in

Ecur)
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Sequential covering algorithm

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {examples covered and correctly 
classified by R}  (DELETE ONLY POS. EX.!)

– until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• return RuleBase
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Learn ordered set of rules

(CN2, Clark and Niblett 1989)

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {all examples covered by R}  
(NOT ONLY POS. EX.!)

• until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• RuleBase := RuleBase U DefaultRule(Ecur)
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Learn-one-rule:

Beam search in CN2

• Beam search in CN2 learn-one-rule algo.:

– construct BeamSize of best rule bodies 
(conjunctive conditions) that are statistically 
significant

– BestBody - min. entropy of examples covered 
by Body 

– construct best rule R := Head  BestBody by 
adding majority class of examples covered by 
BestBody in rule Head
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Variations

• Sequential vs. simultaneous covering of data (as 
in TDIDT): choosing between attribute-values vs. 
choosing attributes

• Learning rules vs. learning decision trees and  
converting them to rules

• Pre-pruning vs. post-pruning of rules

• What statistical evaluation functions to use

• Probabilistic classification

• Best performing rule learning algorithm: Ripper

• JRip implementation of Ripper in WEKA, available 
in ClowdFlows
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Covering algorithm for multiclass learning

(AQ, Michalski 1969,86)

Given examples of N classes C1, …, CN

for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)

– RuleBase(Ci) := empty

– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)

• delete from Pi all pos. ex. covered by R

– until Pi = empty 

++

+

+ +

+
-

-
-

-
-

+
-
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Multi-class learning: 

One-against-all learning strategy 
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CN2 rule learner in Orange
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Subgroup Discovery

• A task in which individual interpretable patterns in the 
form of rules are induced from data, labeled by a 
predefined property of interest.

• SD algorithms learn several independent rules that 
describe groups of target class examples
– subgroups must be large and significant 

1

2

3

Class YES Class NO

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

Subgroup Discovery
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Classification versus Subgroup Discovery

• Classification (predictive induction) -

constructing sets of classification rules

– aimed at learning a model for classification or prediction

– rules are dependent

• Subgroup discovery (descriptive induction) –

constructing individual subgroup describing 

rules 

– aimed at finding interesting patterns in target class 

examples

• large subgroups (high target class coverage)

• with significantly different distribution of target class examples (high

TP/FP ratio, high significance, high WRAcc

– each rule (pattern) is an independent chunk of knowledge
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+

+

+

+

+

+

+

+

+

+

+

+

Classification versus Subgroup discovery

+

+

+

+

+ +

+

+

+

+

1

2

3

Class YES Class NO



Subgroup discovery in

High CHD Risk Group Detection

Input: Patient records described by anamnestic, 
laboratory and ECG attributes

Task: Find and characterize population subgroups 
with high CHD risk (large enough, distributionaly 
unusual)

From best induced descriptions, five were selected by the expert 
as most actionable for CHD risk screening (by GPs):

high-CHD-risk  male & pos. fam. history & age > 46

high-CHD-risk  female & bodymassIndex > 25 & age > 63

high-CHD-risk  ...

high-CHD-risk  ...

high-CHD-risk  ...

(Gamberger & Lavrač, JAIR 2002)



102Subgroup discovery: 
Survey data

Approved = yes ← Sex = female

Approved = yes ← Marital status = married

Approved = yes ← Marital status = divorced & Has children = no

Approved = yes ← Education = university

Selected rules discovered by Apriori-SD subgroup discovery algorithm.



103Subgroup discovery: 
Survey data
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Classification Rule Learning for 

Subgroup Discovery: Deficiencies

• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)

• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 

not covered by previously induced rules), which 

hinders their ability to detect population 

subgroups 

• ‘Ordered’ rules are induced and interpreted 

sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 

Learning to Subgroup Discovery

• Weighted covering algorithm

• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights

• Probabilistic classification

• Evaluation with different interestingness 

measures



106

CN2-SD: CN2 Adaptations

• General-to-specific search  (beam search) for best rules 

• Rule quality measure: 

– CN2: Laplace: Acc(Class  Cond) = 

= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy

WRAcc(Class  Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 

• Weighted covering approach (example weights)

• Significance testing (likelihood ratio statistics)

• Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 

• Standard covering approach: 

covered examples are deleted from current training set

• Weighted covering approach:

– weights assigned to examples 

– covered pos. examples are re-weighted: 

in all covering loop iterations, store 

count i how many times (with how many 

rules induced so far) a pos. example has 

been covered: w(e,i), w(e,0)=1

• Additive weights:  w(e,i) = 1/(i+1)

w(e,i) – pos. example e being covered i times
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Subgroup Discovery
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Subgroup Discovery
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Subgroup Discovery 
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Subgroup Discovery 
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CN2-SD: Weighted WRAcc Search 

Heuristic
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights 
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal 
accuracy (PKDD-2000)

• In WRAcc computation, probabilities are estimated 
with relative frequencies, adapt:
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples

– n’(Cond) : sum of weights of all covered examples

– n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM 

Platform
• Orange data mining toolkit

– classification and subgroup 

discovery algorithms 

– data mining workflows

– visualization 

SD Algorithms in Orange
SD (Gamberger & Lavrač, JAIR 2002)

Apriori-SD (Kavšek & Lavrač, AAI 2006)

CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2  

classification rule learner to Subgroup Discovery
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Outline

• Introduction to Machine Learning and 

Data Mining: Techniques overview 

• Rule learning 

• Relational learning: Propositionalization

• Semantic data mining

• Relational learning: Wordification
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Relational Data Mining 

(Inductive Logic Programming) task

Relational Data Mining

knowledge discovery 

from data

model, patterns, …

Given: a relational database, a set of tables. sets of logical 

facts, a graph, …

Find: a classification model, a set of interesting patterns 



Relational data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data



Relational data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data

– Learning from complex 

structured data: e.g., 

molecules and their 

biochemical properties
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Sample problem: 

East-West trains
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RDM knowledge representation 

(database)

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

LOAD_TABLE

CAR_TABLE
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ER diagram for East-West trains

TrainDirection

Has

Car

Shape

Length

Roof

Wheels

1

M

Has Load
1 1

Number Object



Relational data mining

• Relational data mining is characterized by using 

background knowledge (domain knowledge) in the 

data mining process

• Selected approaches:

– Inductive logic programming - ILP (Muggleton, 1991; 

Lavrač & Džeroski 1994), …

– Relational learning (Quinlan,1993)

– Learning in DL (Lisi 2004), …

– Relational Data Mining (Džeroski & Lavrač, 2001),

– Statistical relational learning (Domingos, De Raedt…)

– Propositionalization approach to RDM (Lavrač et al.)



Our early work: 

Semantic subgroup discovery

• Propositionalization approach: Using relational 
subgroup discovery in the SDM context
– General purpose system RSD for Relational 

Subgroup Discovery, using a propositionalization
approach to relational data mining

– Applied to semantic data mining in a biomedical 
application by using the Gene Ontology as background 
knowledge in analyzing microarray data

(Železny and Lavrač, MLJ 2006)
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Relational Data Mining through 

Propositionalization

Propositionalization

Step 1
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Relational Data Mining through 

Propositionalization

Propositionalization

Step 1

1. constructing 

relational features

2. constructing a 

propositional table
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Relational Data Mining through 

Propositionalization

Propositionalization

model, patterns, …

Data Mining

Step 1

Step 2
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Relational Data Mining through 

Propositionalization

Propositionalization

patterns (set of rules)

Data Mining

Step 1

Step 2
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Sample ILP problem: 

East-West trains
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Relational data representation

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

Propositionalization task

Transform a multi-relational 

(multiple-table)

representation to a 

propositional representation

(single table)

Proposed in ILP systems 

LINUS (Lavrac et al. 1991, 1994), 

1BC (Flach and Lachiche 1999), …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLE

Main propositionalization step:

first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositional learning:

t(T)  f1(T), f4(T)

Relational interpretation:

eastbound(T) 

hasShortCar(T),hasClosedCar(T).
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RSD algorithm:

Relational Data Mining in Orange4WS
⚫ service for propositionalization through efficient 

first-order feature construction (Železny and Lavrač, 

MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)

f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

• subgroup discovery using CN2-SD

mutagenic(M)  feature121(M), feature235(M)
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RSD algorithm

Efficient propositionalization can be applied to 
individual-centered, multi-instance learning problems:

– one free global variable (denoting an individual, e.g. molecule M)

– one or more structural predicates: (e.g. has_atom(M,A)),  each 
introducing a new existential local variable (e.g. atom A), using either the 
global variable (M) or a local variable introduced by other structural 
predicates (A)

– one or more utility predicates defining properties of individuals or their 
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

mutagenic(M):- feature121(M), feature235(M)
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Outline

• Introduction to Machine Learning and 

Data Mining: Techniques overview 

• Rule learning 

• Relational learning: Propositionalization

• Semantic data mining

• Relational learning: Wordification



What is Semantic Data Mining

Semantic 

data mining
annotations,

mappings

ontologies

data

model,

patterns

SDM task definition

Given: 

transaction data table, relational database,

text documents, Web pages, …

one or more domain ontologies

Find: a classification model, a set of patterns
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Semantic data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data

– Learning from complex 

structured data: e.g., 

molecules and their 

biochemical properties

– Learning by using domain 

knowledge in the form of 

ontologies = semantic data 

mining



Using domain ontologies in 

Semantic Data Mining 
Using domain ontologies as background knowledge, e.g., 
using the Gene Ontology (GO)

• GO is a database of terms, describing gene sets in terms 
of their 

– functions (12,093) 

– processes (1,812) 

– components (7,459) 

• Genes are annotated 
to GO terms

• Terms are connected

(is_a, part_of)

• Levels represent 

terms generality 



What is Semantic Data Mining

• Ontology-driven (semantic) data mining is an 

emerging research topic 

• Semantic Data Mining (SDM) - a new term 

denoting:

– the new challenge of mining semantically annotated 

resources, with ontologies used as background 

knowledge to data mining

– approaches with which semantic data are mined

137
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

Gene Ontology

12093 biological process

1812 cellular components

7459 molecular functions

Joint work with 

Igor Trajkovski 

and Filip Zelezny
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

First-order features, describing 

gene properties and relations 

between genes, can be viewed 

as generalisations of individual 

genes



Semantic subgroup discovery with RSD

1. Take ontology terms represented as logical facts in Prolog, e.g.
component(gene2532,'GO:0016020').

function(gene2534,'GO:0030554').

process(gene2534,'GO:0007243').

interaction(gene2534,gene4803).

2. Automatically generate generalized relational features:
f(2,A):-component(A,'GO:0016020').

f(7,A):-function(A,'GO:0030554').

f(11,A):-process(A,'GO:0007243').

f(224,A):- interaction(A,B), function(B,'GO:0016787'), 
component(B,'GO:0043231').

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD



Step 2: RSD feature construction

f(7,A):-function(A,'GO:0046872').

f(8,A):-function(A,'GO:0004871').

f(11,A):-process(A,'GO:0007165').

f(14,A):-process(A,'GO:0044267').

f(15,A):-process(A,'GO:0050874').

f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874').

f(26,A):-component(A,'GO:0016021').

f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020').

f(122,A):-interaction(A,B),function(B,'GO:0004872').

f(223,A):-interaction(A,B),function(B,'GO:0004871'), 
process(B,'GO:0009613').

f(224,A):-interaction(A,B),function(B,'GO:0016787'), 
component(B,'GO:0043231').

Construction of first order features, with support > min_support

existential



Step 3: RSD Propositionalization

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

diffexp g1 (gene64499) 

diffexp g2 (gene2534)   

diffexp g3 (gene5199)   

diffexp g4 (gene1052)    

diffexp g5 (gene6036)   

….

random g1 (gene7443)

random g2 (gene9221)

random g3 (gene2339)

random g4 (gene9657)

random g5 (gene19679)

….



Step 4: RSD rule construction with CN2-SD

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

Over-

expressed 

IF 

f2 and f3

[4,0]

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871') 
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Subgroup Discovery
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Subgroup Discovery
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diff. exp. genes Not diff. exp. genes
Cl=YES  f2 and f3

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage  x  Precision
*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery
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RSD naturally uses gene weights in its procedure for repetitive 
subgroup generation, via its heuristic rule evaluation: weighted 
relative accuracy
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Outline

• Introduction to Machine Learning and 

Data Mining: Techniques overview 

• Rule learning 

• Relational learning: Propositionalization

• Semantic data mining

• Relational learning: Wordification



Propositionaization through Wordification: 

Motivation

• Develop a RDM technique inspired by text 

mining 

• Using a large number of simple, easy to 

understand features (words)

• Improved scalability, handling large datasets

• Used as a preprocessing step to propositional 

learners



Background: Data mining 

data

knowledge discovery 

from data

model, patterns, clusters, 

…

Given: transaction data table, a set of text documents, … 

Find: a classification model, a set of interesting patterns 

Data Mining

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



Data mining: Task reformulation 

Person Young Myope Astigm. Reuced tear Lenses

O1 1 1 0 1 NO

O2 1 1 0 0 YES

O3 1 1 1 1 NO

O4 1 1 1 0 YES

O5 1 0 0 1 NO

O6-O13 ... ... ... ... ...

O14 0 0 0 0 YES

O15 0 0 1 1 NO

O16 0 0 1 0 NO

O17 0 1 0 1 NO

O18 0 1 0 0 NO

O19-O23 ... ... ... ... ...

O24 0 0 1 0 NO

Binary features and class values



Text mining: 

Words/terms as binary features

Instances = documents

Words and terms = Binary features

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text mining

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text Mining

• Feature construction
– StopWords elimination

– Stemming or lemmatization

– Term construction by frequent N-Grams construction

– Terms obtained from thesaurus (e.g., WordNet)

• BoW vector construction

• Mining of BoW vector table
– Feature selection, Document similarity computation

– Text mining: Categorization, Clustering, Summarization, 
…



Stemming and Lemmatization

• Different forms of the same word usually 

problematic for text data analysis
– because they have different spelling and similar meaning (e.g. 

learns, learned, learning,…)

– usually treated as completely unrelated words

• Stemming is a process of transforming a word into 

its stem  

– cutting off a suffix (eg., smejala -> smej)

• Lemmatization is a process of transforming a 

word into its normalized form

– replacing the word, most often replacing a suffix (eg., 

smejala -> smejati)



Bag-of-Words document 

representation



Word weighting

• In bag-of-words representation each word is represented 
as a separate variable having numeric weight.

• The most popular weighting schema is normalized word 
frequency TFIDF:

– Tf(w) – term frequency (number of word occurrences in a 
document)

– Df(w) – document frequency (number of documents containing the 
word)

– N – number of all documents

– Tfidf(w) – relative importance of the word in the document

)
)(

log(.)(
wdf

N
tfwtfidf =

The word is more important if it appears 
several times in a target document

The word is more important if it 
appears in less documents



Cosine similarity between 

document vectors

• Each document D is represented as a vector of       

TF-IDF weights 

• Similarity between two vectors is estimated by the 

similarity between their vector representations 

(cosine of the angle between the two vectors):



Wordification Methodology

• Transform a relational database to a document 

corpus

• For each individual (row) in the main table, concatenate 

words generated for the main table with words generated

for the other tables, linked through external keys



Text mining

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Wordification Methodology

• One individual of the main data table in the 

relational database ~ one text document

• Features (attribute values)  ~ the words of this 

document

• Individual words (called word-items or witems) 

are constructed as combinations of:

• n-grams are constructed to model feature 

dependencies:



Wordification Methodology

• Transform a relational database to a document 

corpus

• Construct BoW vectors with TF-IDF weights on 

words

(optional: Perform feature selection)

• Apply text mining or propositional learning on BoW

table



Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, 

car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, 

car_roof_peaked, car_shape_rectangle, 

car_wheels_3, car_roof_peaked__car_shape_rectangle,

car_roof_peaked__car_wheels_3, 

car_shape_rectangle__car_wheels_3], east



Wordification
t1: [car_roof_none, car_shape_rectangle, car_wheels_2, 

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, 

car_wheels_3, car_roof_peaked__car_shape_rectangle,

car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

t5: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, 

car_wheels_2, car_roof_flat__car_shape_hexagon,

car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], west

TF-IDF calculation for BoW vector construction:



TF-IDF weights

• No explicit use of existential variables in 

features, TF-IDF instead

• The weight of a word indicates how relevant is 

the feature for the given individual

• The TF-IDF weights can then be used either for 

filtering words with low importance or for using 

them directly by a propositional learner (e.g. J48)



Experiments

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial. 

• Results (using J48 for propositional learning)

– first applying Friedman test to rank the algorithms, 

– then post-hoc test Nemenyi test to compare multiple 

algorithms to each other



Experiments

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial. 

• Results (using J48 for propositional learning)



Experiments



Use Case: IMDB

• IMDB subset: Top 250 and bottom 100 movies

• Movies, actors, movie genres, directors, director genres

• Wordification methodology applied

• Association rules learned on BoW vector table



Use Case: IMDB
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Summary

– Wordification methodology 

– Allows for solving non-standard RDM tasks, including RDM 

clustering, word cloud visualization, association rule 

learning, topic ontology construction, outlier detection, …



Summary: From machine learning to 

Semantic Data Mining

Data Mining

Knowledge Discovery

Semantic Web

Ontologies

Relational Subgroup Discovery 

Semantic Subgroup 

Discovery
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