Data Mining and Knowledge Discovery

Part of Jožef Stefan IPS Programme – ICT3

2020 / 2021

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Data Mining and Knowledge Discovery: Logistics and lecturers

Contacts: <u>http://kt.ijs.si/petra_kralj/dmkd3.html</u> Nada Lavrač: <u>nada.lavrac@ijs.si</u>

- Introduction: ML and DM, decision tree learning, rule learning
- Relational learning: relational learning, semantic data mining
- Advanced topics: text mining, clustering, outlier detection

Petra Kralj Novak: petra.kralj.novak@ijs.si

- classification, evaluation, regression + practice with Orange in Scikit
- association rules, clustering + practice with Orange
- neural networks hands-on with Keras

Martin Žnidaršič: martin.znidarsic@ijs.si

- Advanced topics: SVM, neural networks, ensemble learning, active learning

ICT3 Course Schedule – 2020/21

ICT3 – for materials, see <u>http://kt.ijs.si/petra_kralj/dmkd3.html</u> for lectures, use IPS ZOOM link

10.11.2020	15:00 - 17:00	prof. dr. Nada Lavrač
17.11.2020	15:00 - 17:00	doc. dr. Petra Kralj Novak
24.11.2020	15:00 - 17:00	prof. dr. Nada Lavrač
1.12.2020	15:00 - 17:00	doc. dr. Petra Kralj Novak
8.12.2020	15:00 - 17:00	doc. dr. Martin Žnidaršič
15.12.2020	15:00 - 17:00	doc. dr. Petra Kralj Novak, doc. dr. Martin Žnidaršič
22.12.2021	15:00 - 17:00	doc. dr. Petra Kralj Novak - Oral exam - Using Petra's personal ZOOM link

Data Mining and Knowledge Discovery: Credits and Coursework

Course requirements (10 ECTS credits):

- Attending lectures and selected hands-on exercises
- Oral exam (40%)
- Seminar (60%):
 - Data analysis of your own data
 - own initiatives highly recommended ...

Data Mining and Knowledge Discovery: Credits and Coursework

Exam: Oral exam - Theory

Seminar: topic selection + results presentation

- One hour available for seminar topic discussion one page written proposal defining the task and the selected dataset
- Deliver written report + electronic copy (4 pages in Information Society paper format, instructions on the web)
 - Report on data analysis of own data needs to follow the CRISP-DM methodology
 - Presentation of your seminar results (15 minutes each: 10 minutes presentation + 5 minutes discussion)

- Open source machine learning and data visualization toolbox
 - <u>https://orange.biolab.si/</u>
 - http://file.biolab.si/datasets/
 - <u>https://www.youtube.com/channel/UCIKKWBe2SC</u>
 <u>AEyv7ZNGhIe4g</u>
- Interactive data analysis workflows
- Visual programming
- Based on numpy, scipy and scikit-learn
- GUI: Qt framework

Hands-on exercises

- Open source machine learning and data visualization
 - Interactive data analysis workflows with a large toolbox
 - Visual programming
 - Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining Toolbox in Python, JMLR 14(Aug): 2349–2353.

- *learn* scikit-learn is Gold standard of Python machine learning
 - Simple and efficient tools for data mining and data analysis
 - Well documented
 - Pedregosa et al. (2011) <u>Scikit-learn: Machine Learning in Python</u>, JMLR 12, pp. 2825-2830.

K Keras

- Neural-network library written in Python.
- Chollet, F. et al. (2015) "Keras"

Data Table

213

Rank

-

Data Sets

Data Mining and Knowledge Discovery: Supporting material

- Supporting material on videolectures.net: Seminar: AI for Industry and Society, Ljubljana 2020
 - http://videolectures.net/AlindustrySeminar2019/
 - Marko Robnik Šikonja: Artificial Intelligence: Techniques, Trends and Applications
 - Nada Lavrač: Data Science, Machine Learning and Big Data: Current trends
 - Blaž Zupan: Data Science with the OrangeToolbox

Machine Learning and Data Mining

- Machine Learning (ML) computer algorithms/machines that learn predictive models from class-labeled data
- Data Mining (DM) extraction of useful information from data: discovering relationships and patterns that have not previously been known, and use of ML techniques applied to solving real-life data analysis problems
- Knowledge discovery in databases (KDD) the process of knowledge discovery

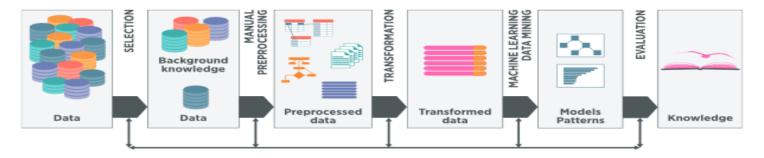
Data Mining and KDD

- Buzzword since 1996
- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." *
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

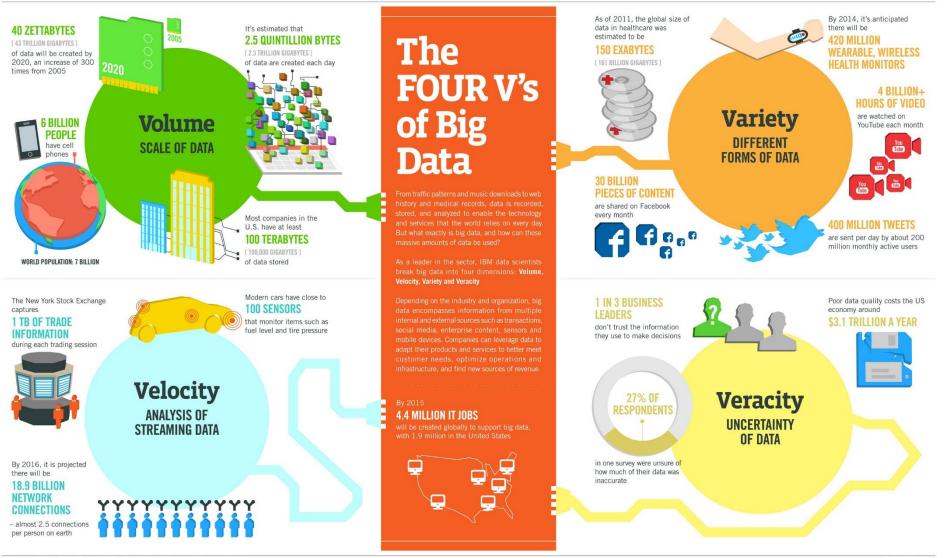


- KDD process involves several phases:
 - data preparation
 - data mining (machine learning, statistics)
 - evaluation and use of discovered patterns
- Data mining is the key step, but represents only 15%-25% of the entire KDD process

Big Data

- Big Data Buzzword since 2008 (special issue of Nature on Big Data)
 - data and techniques for dealing with very large volumes of data, possibly dynamic data streams
 - requiring large data storage resources, special algorithms for parallel computing architectures.

The 4 Vs of Big Data



Data Science

- Data Science buzzword since 2012 when Harvard Business Review called it "The Sexiest Job of the 21st Century"
 - an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining.
 - used interchangeably with earlier concepts like business analytics, business intelligence, predictive modeling, and statistics.

Machine Learning and Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discovery	
01	17	myope	no	reduced	NONE	o i	
O2	23	myope	no	normal	SOFT	from data	
O3	22	myope	yes	reduced	NONE		
O4	27	myope	yes	normal	HARD		
O5	19	hypermetrope	no	reduced	NONE	Machine Learning	
06-013						Machine Leanning	
O14	35	hypermetrope	no	normal	SOFT	Dete Mining	
O15	43	hypermetrope	yes	reduced	NONE	Data Mining	
O16	39	hypermetrope	yes	normal	NONE		
017	54	myope	no	reduced	NONE		
O18	62	myope	no	normal	NONE		mad
019-023							mod
O24	56	hypermetrope	yes	normal	NONE		
,							

data

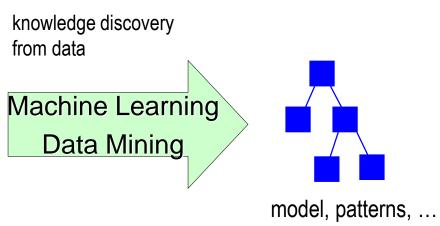
Given: class labeled data

Find: a classification model, a set of interesting patterns

Machine Learning and Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE

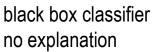


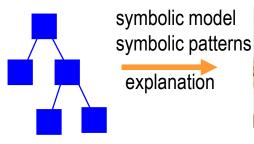
data

Given: class labeled data **Find:** a classification model, a set of interesting patterns

new unclassified instance

classified instance





Why learn and use black-box models

Given: the learned classification model (e.g, a linear classifier, a deep neural network, ...)

Find: - the class label for a new unlabeled instance

new unclassified instance

classified instance

Advantages:

- best classification results in image recognition and other complex classification tasks

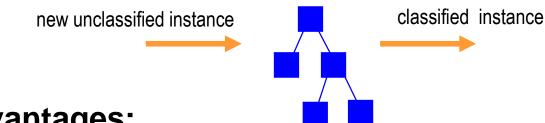
Drawbacks:

- poor interpretability of results
- can not be used for pattern analysis

Why learn and use symbolic models

Given: the learned classification model (a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance



Advantages:

- use the model for the explanation of classifications of new data instances
- use the discovered patterns for data exploration

Drawbacks:

- lower accuracy than deep NNs

Simplified example: Learning a classification model from contact lens data

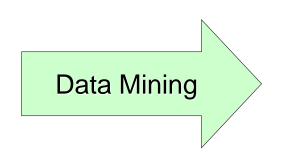
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
O6-O13	•••		•••		
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023	•••		•••		
O24	56	hypermetrope	yes	normal	NONE

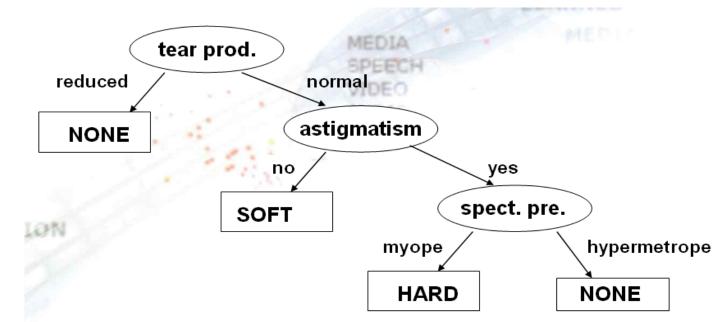
Pattern discovery in Contact lens data

Doroon	A co	Chaot proce	Actions	Toor prod		PATTERN
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	
O1	17	myope	no	reduced	NONE	
O2	23	myope	no	normal	SOFT	
O3	22	myope	yes	reduced	NONE	Rule:
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	IF
06-013						Tear prod. =
O14	35	hypermetrope	no	normal	SOFT	reduced
O15	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	THEN
O17	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	Lenses =
019-023						NONE
O24	56	hypermetrope	yes	normal	NONE	

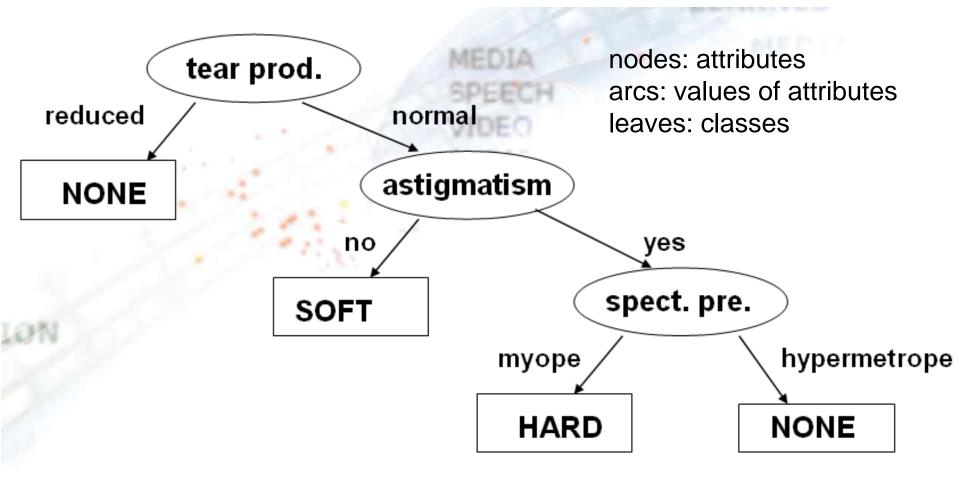
Learning a classification model from contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
O2	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
O14	ore-presby	hypermetrope	no	normal	SOFT
O15	ore-presby	hypermetrope	yes	reduced	NONE
O16	ore-presbyc	hypermetrope	yes	normal	NONE
O17	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE

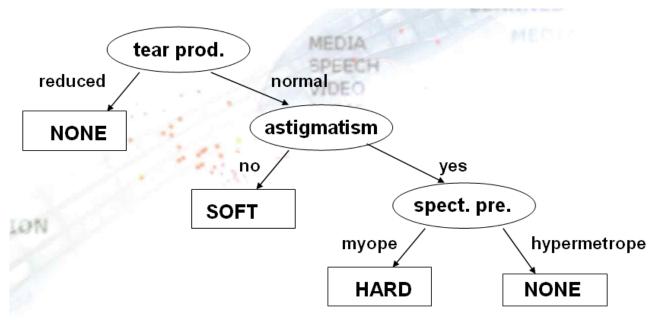




Decision tree classification model learned from contact lens data



Learning a decision tree classification ²³ model



Search heuristics: Which attribute to test at each node in the tree ? The attribute that is most useful for classifying examples.

- First define a measure called entropy, to characterize the (im)purity of an arbitrary collection of examples
- Information gain of an attribute is measured as reduction of entropy of a training set S after splitting into subsets based on values of attribute A

Entropy

- **S** training set, C_1, \dots, C_N classes
- Entropy E(S) measure of the impurity of training set S

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

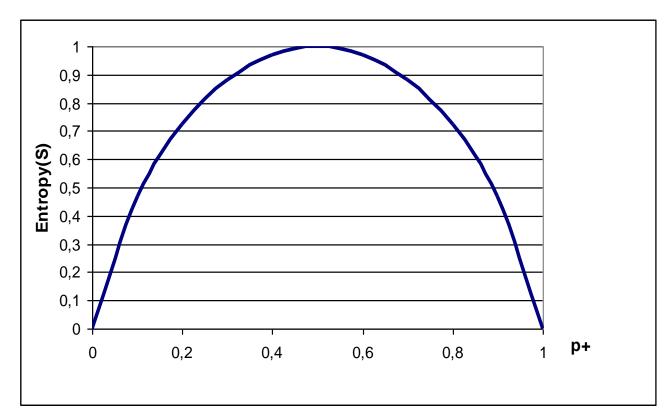
p_c - prior probability of class C_c
 (relative frequency of C_c in S)

• Entropy in binary classification problems

 $\mathbf{E}(\mathbf{S}) = -\mathbf{p}_{+}\mathbf{log}_{2}\mathbf{p}_{+} - \mathbf{p}_{-}\mathbf{log}_{2}\mathbf{p}_{-}$

Entropy

- $E(S) = -p_{+} \log_2 p_{+} p_{-} \log_2 p_{-}$
- The entropy function relative to a Boolean classification, as the proportion p₁ of positive examples varies between 0 and 1



Information gain search heuristic

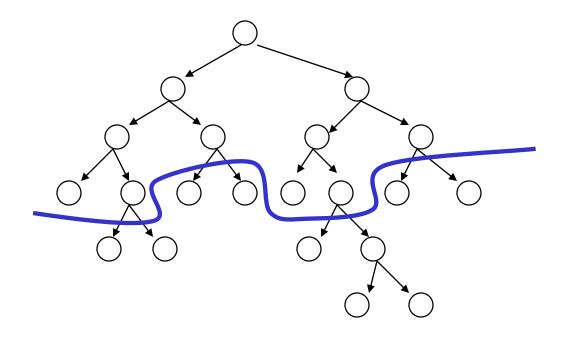
- Information gain measure is aimed to minimize the number of tests needed for the classification of a new object
- Gain(S,A) expected reduction in entropy of S due to sorting on A

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

- Most informative attribute :
 - Select S
 - Select A to split S into $S_1, S_2, ..., S_v$
 - Select A, which maximizes info. Gain: max Gain(S,A)

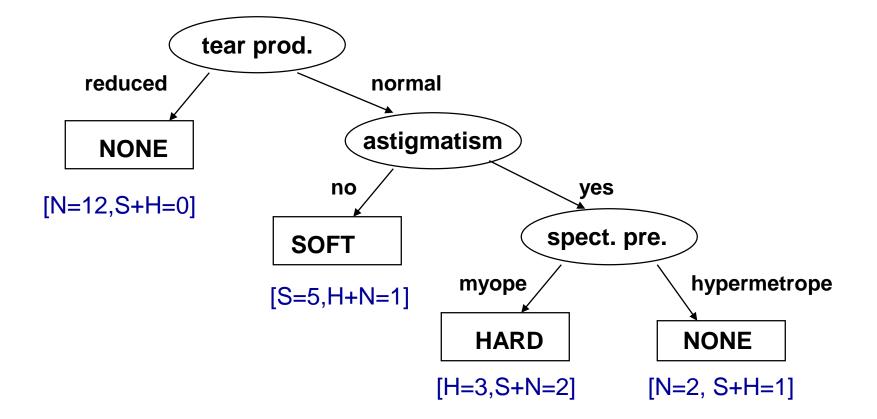
Pruning of decision trees

- Avoid overfitting the data by tree pruning
- Pruned trees are
 - less accurate on training data
 - more accurate when classifying unseen data



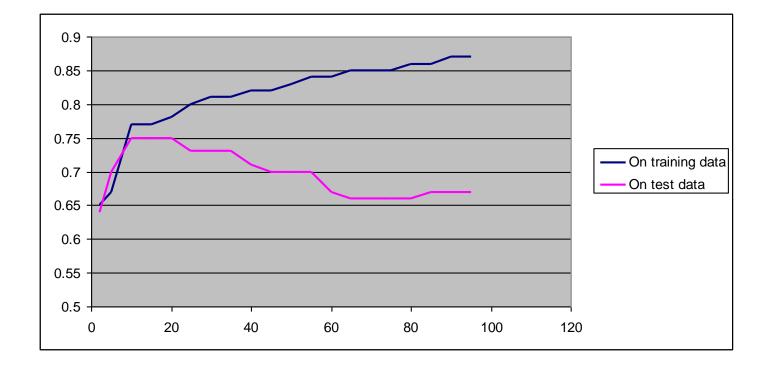
Prediction of breast cancer recurrence: Tree pruning Degree_of_malig < 3 **≥** 3 Involved_nodes Tumor_size < 15 ≥ **15** ≥ **3** < 3 no_recur 125 Age no_recur 30 no_recur 27 recurrence 39 recurrence 18 recurrence 10 ≥40 < 40 2 no_recur 4 no_recur 4 recurrence 1 no_rec 4 rec1

Pruned decision tree for contact lenses recommendation



Overfitting and accuracy

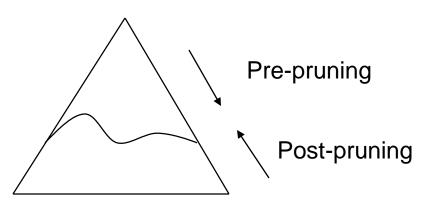
• Typical relation between tree size and accuracy



• Question: how to prune optimally?

Avoiding overfitting

- How can we avoid overfitting?
 - Pre-pruning (forward pruning): stop growing the tree e.g., when data split not statistically significant or too few examples are in a split
 - Post-pruning: grow full tree, then post-prune



- forward pruning considered inferior (myopic)
- post pruning makes use of sub trees

Selected decision/regression tree learners

- Decision tree learners
 - ID3 (Quinlan 1979)
 - CART (Breiman et al. 1984)
 - Assistant (Cestnik et al. 1987)
 - C4.5 (Quinlan 1993), C5 (See5, Quinlan)
 - J48 (available in WEKA), Tree (in Orange)
- Regression tree learners, model tree learners

- M5, M5P (implemented in WEKA), Tree (in Orange)

Selected decision tree learners

• Decision tree learners: Tree (in Orange)

Tree

🕁 Tree	?	>
Name		
Tree		
Parameters		
✓ Induce binary tree		
Min. number of instances in leaves:		2
✓ Do not split subsets smaller than:		5
\checkmark Limit the maximal tree depth to:		100
Classification		
Stop when majority reaches [%]:		95
Apply Automatically		
? B		

Selected decision tree learners

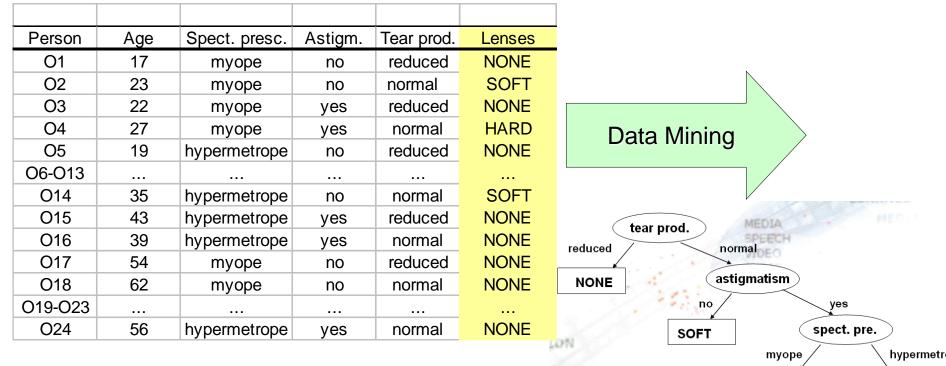
- Homework
 - To prepare for the lecture of Petra Kralj Novak on 17 Nov. 2020:
 - see Blaž Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AlindustrySeminar2019_zupan_data_science/

see also YouTube tutorials on Orange

https://www.youtube.com/channel/UCIKKWBe2SCAEyv7ZNGhIe4g

Learning a classification model from contact lens data



- lenses=NONE ← tear production=red
- lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope
- **lenses=SOFT** ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $lenses=NONE \leftarrow$

NONE

HARD

Classification rules model learned from contact lens data

lenses=NONE ← tear production=reduced

lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope

- lenses=SOFT ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $\mathsf{lenses} = \mathsf{NONE} \leftarrow$

CN2 rule learner in Orange

CN2 Rule Induction

i CN2 Rule Induction	?	×
Name		
CN2 rule inducer		
Rule ordering Covering Image: Ordered Image: Exclusion Image: Output Unordered Image: Weight) \$
Rule search Evaluation measure: Entro Beam width:	ру	▼ 5 \$
Rule filtering		
Minimum rule coverage:		1 🗘
Maximum rule length:		5 🗘
Statistical significance (default o):	1.	00 \$
Relative significance (parent o):	1.	00 🗘
Apply Automa	atically	
2		

Learning from Unlabeled Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					Х.
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					/ \
O24	56	hypermetrope	yes	normal	NONE

Unlabeled data - clustering: grouping of similar instances - association rule learning

Multi-label Learning Task

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
O1	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023			no		
O24	56	hypermetrope	no	normal	NONE

Several class labels of training examples of a single Target class attribute

Binary Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes

- positive vs. negative examples of Target class
- Concept learning binary classification and class description
 - for Subgroup discovery exploring patterns characterizing groups of instances of target class

Multi-target Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	Pilot
01	17	myope	no	reduced	NO	NO
O2	23	myope	no	normal	YES	NO
O3	22	myope	yes	reduced	NO	NO
O4	27	myope	yes	normal	YES	NO
O5	19	hypermetrope	no	reduced	NO	NO
O6-O13						
O14	35	hypermetrope	no	normal	YES	YES
O15	43	hypermetrope	yes	reduced	NO	NO
O16	39	hypermetrope	yes	normal	NO	NO
O17	54	myope	no	reduced	NO	NO
O18	62	myope	no	normal	NO	YES
019-023						
O24	56	hypermetrope	yes	normal	NO	NO

Multi target classification

each example belongs to several Target classes

Learning from Numeric Class Data

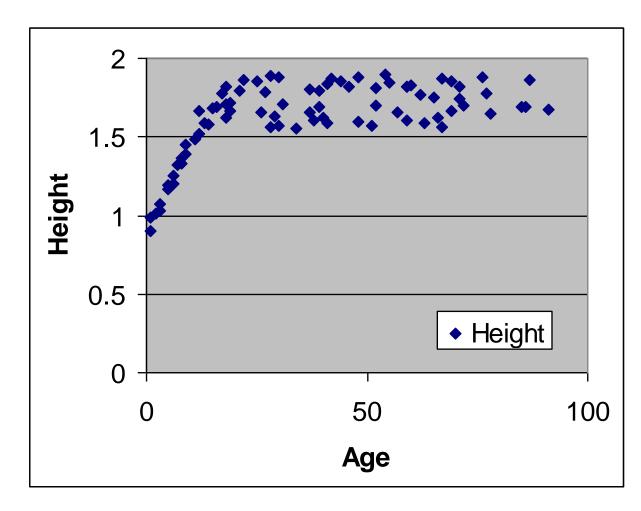
Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
O1	17	myope	no	reduced	0
O2	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
O6-O13					
O14	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
O17	54	myope	no	reduced	0
O18	62	myope	no	normal	0
O19-O23					
O24	56	hypermetrope	yes	normal	0

Numeric class values – regression analysis

Example regression problem

(see lectures of Petra Kralj Novak on 17 November 2020)

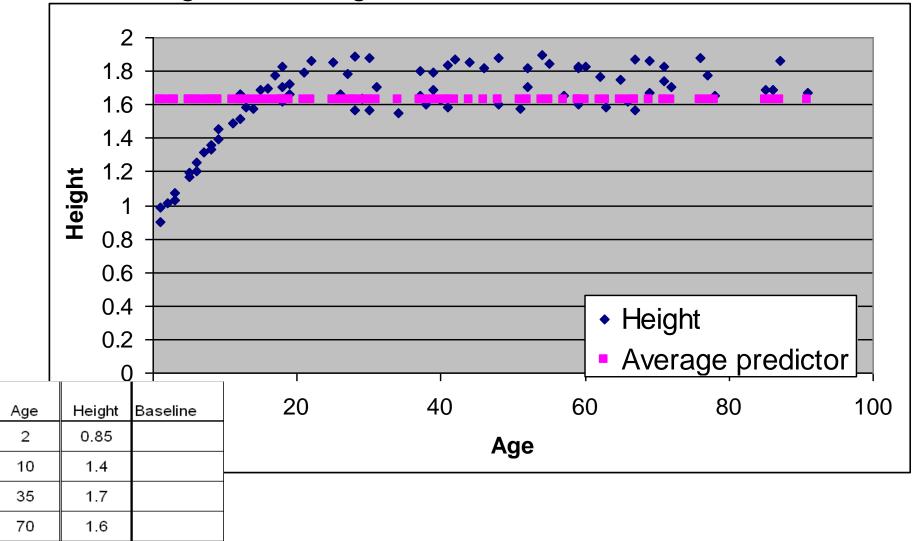
data about 80 people: Age and Height



Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82

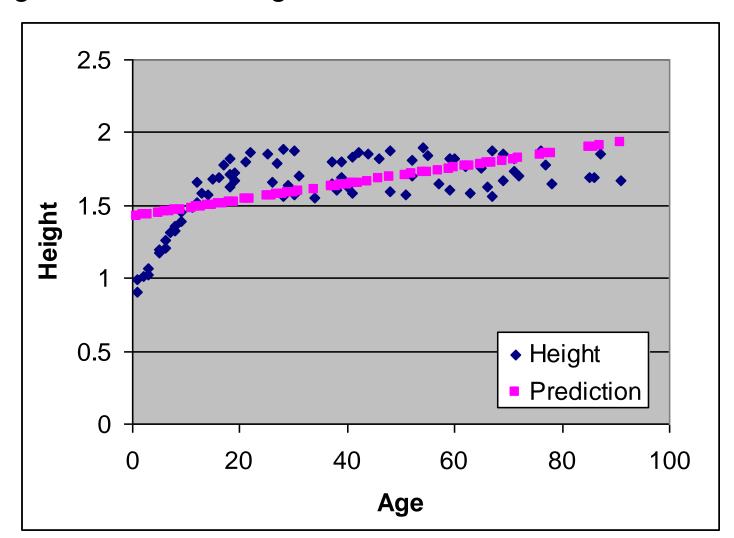
Baseline numeric model (predictor)

• Average of the target variable is 1.63

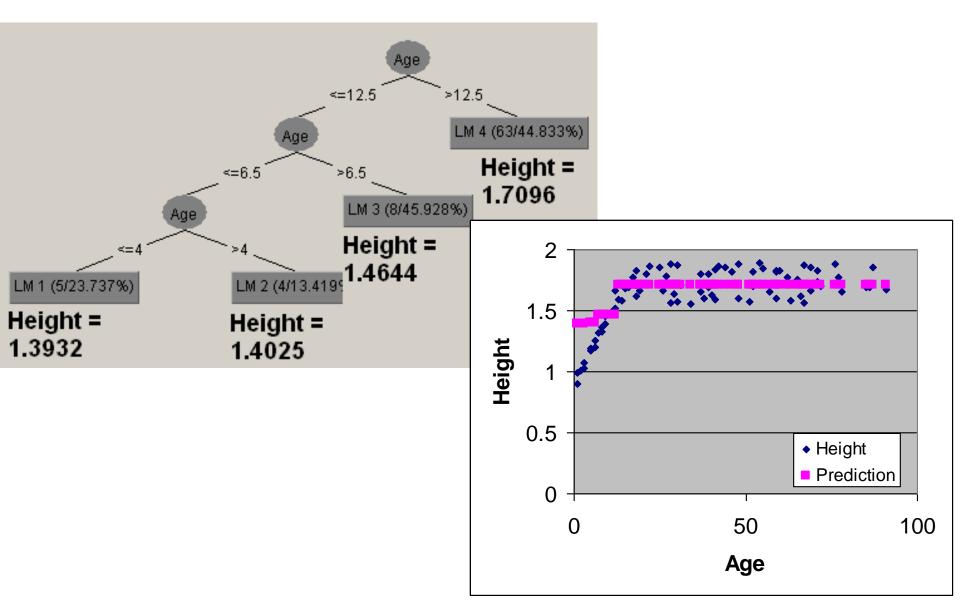


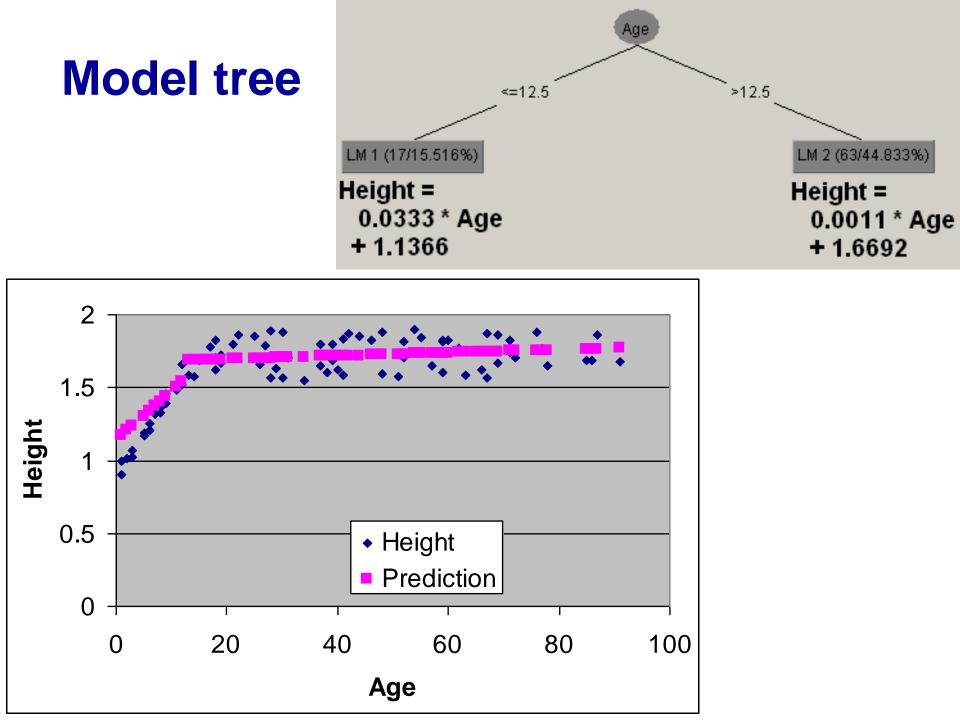
Linear Regression Model

Height = 0.0056 * Age + 1.4181



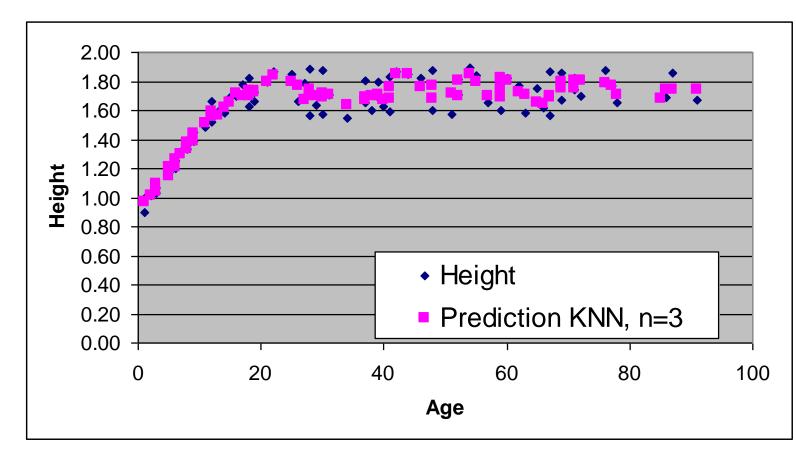
Regression tree





kNN – K nearest neighbors

- Looks at K closest examples (by age) and predicts the average of their target variable
- K=3



First Generation Machine Learning

• First machine learning algorithms for

Decision tree and rule learning in 1970s and early 1980s
 by Quinlan, Michalski et al., Breiman et al., ...

Characterized by

- Learning from data stored in a single data table
- Relatively small set of instances and attributes

Lots of ML research followed in 1980s

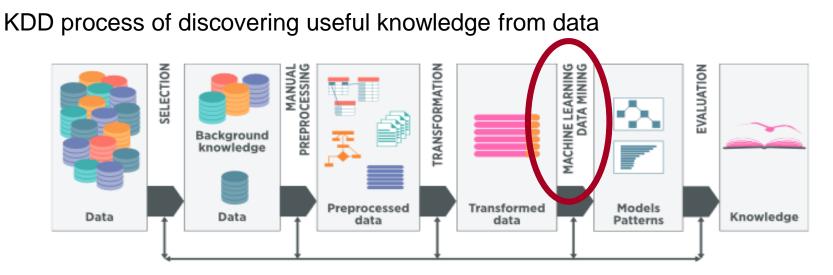
- Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
- Extended set of learning tasks and algorithms addressed

Second Generation Data Mining

- Developed since 1990s:
 - Focused on data mining tasks characterized by large datasets described by large numbers of attributes
 - Industrial standard: CRISP-DM methodology (1997)

- Since 1996 new buzzword: Knowledge discovery in databases (KDD)
- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models or patterns in data."

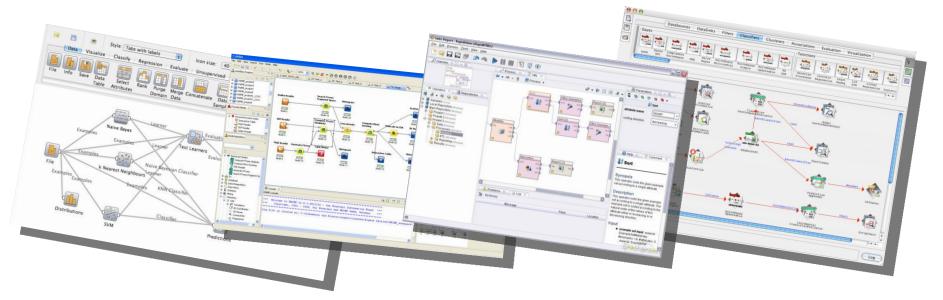
KDD Process



- KDD process involves several phases:
 - data preparation
 - machine learning, data mining, statistics, …
 - evaluation and use of discovered patterns
- Machine Learning (ML) / Data Mining (DM) is the key step in the KDD process
 - performed using machine learning or pattern mining techniques for extracting classification models or interesting patterns in data
 - this key step represents only 15%-25% of entire KDD process

Second Generation Data Mining Platforms

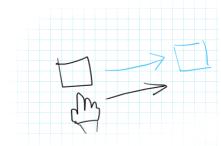
Orange, WEKA, KNIME, RapidMiner, ...

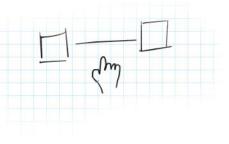


- include numerous data mining algorithms
- enable data and model visualization
- like Orange, Taverna, WEKA, KNIME, RapidMiner, also enable complex workflow construction

Data Mining Workflows for Open Data Science

- Workflows are executable visual representations of procedures
 - divided into smaller chunks of code (components)
 - organized as sequences of connected components.
- Suitable for representing complex scientific pipelines
 - by explicitly modeling dependencies of components
- Building scientific workflows consists of simple operations on workflow elements (drag, drop, connect), suitable for nonexperts





Second Generation Data Mining

Developed since 1990s:

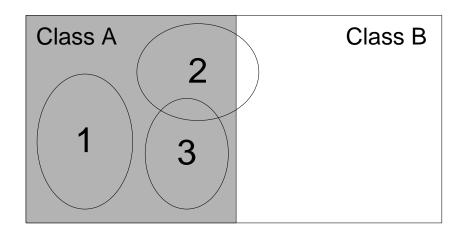
 Focused on data mining tasks characterized by large datasets described by large numbers of attributes

- New conferences on practical aspects of data mining and knowledge discovery: KDD, PKDD, ...
- New learning tasks and efficient learning algorithms:
 - Learning descriptive patterns: association rule learning, subgroup discovery, ...
 - Learning predictive models: Bayesian network learning,, relational data mining, statistical relational learning, SVMs, ...

Subgroup Discovery

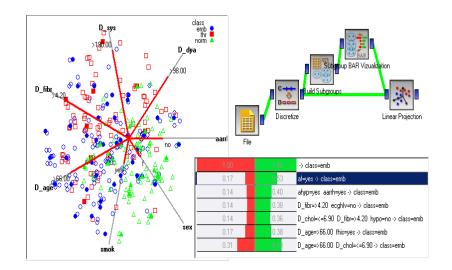
- Data transformation:
 - binary class values (positive vs. negative examples of Target class)
- Subgroup discovery:
 - a task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
O1	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
O19-O23					
O24	56	hypermetrope	yes	normal	NO



SD algorithms in Orange DM Platform

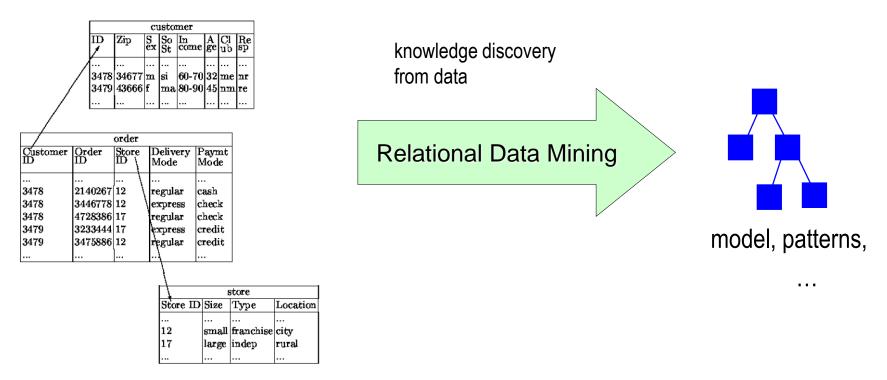
- Orange data mining toolkit
 - classification and subgroup discovery algorithms
 - data mining workflows
 - visualization



SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002)
- Apriori-SD (Kavšek & Lavrač, AAI 2006)
- CN2-SD (Lavrač et al., JMLR 2004)

Relational Data Mining



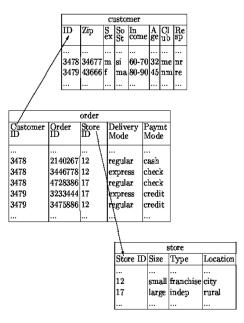
Relational representation of customers, orders and stores.

Given: a relational database, a set of tables, sets of logical facts, a graph, ...

Find: a classification model, a set of patterns

Relational Data Mining

- ILP, relational learning, relational data mining
 - Learning from complex relational databases

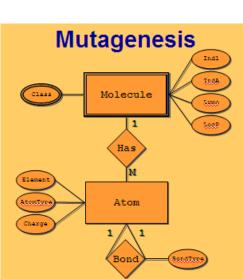


Relational representation of customers, orders and stores.

Relational Data Mining

• ILP, relational learning, relational data mining

- Learning from complex relational databases
- Learning from complex structured data, e.g. molecules and their biochemical properties

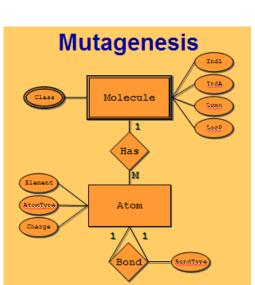


					usto				_	_	
		ID ∮	Zip	S ex	$_{\rm St}^{\rm So}$	$\frac{\ln}{\cos}$	ıe	A ge	Cl ub	$_{ m sp}^{ m Re}$	
	/										
	/	3478	34677	m	si	60-1	70	32	me	nr	
/	/	3479	43666	f	ma	80-9	90	45	nn	re	
										<u> </u>	
_/			order								
	0-			Тт			ID				
Customer ID	07 ID	aer	$\frac{\text{Store}}{\text{ID}}$)eliv Aode		P M	'ayı lod	nt e		
			\	١.							
3478	214	0267	12	ľ	egula	ar	c	ash			
3478	344	6778	12	∖le	xpre	SS	c]	hec	k		
3478	472	8386	17	ի	egula	ar	c]	hec	k		
3479	323	3444	17	ŀę	xpre	SS	c	redi	it		
3479	347	5886	12	P	egula	ar	c	redi	it		
]		4						
					Π				s	tore	
					Sto	re 🛛	D	Siz	e	Туре	Location
					12			\mathbf{sm}	all	franchise	city
					17			lar	ge	indep	rural

Relational representation of customers, orders and stores.

Relational and Semantic Data Mining

- ILP, relational learning, relational data mining
 - Learning from complex relational databases
 - Learning from complex structured data, e.g. molecules and their biochemical properties
 - Learning by using domain knowledge in the form of ontologies = semantic data mining



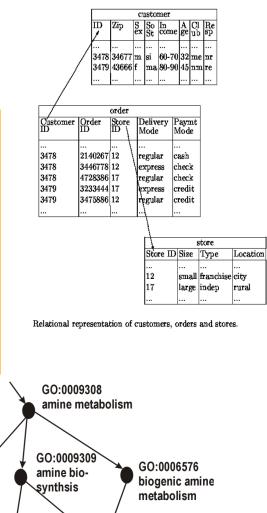
GO:0006520

amino acid

metabolism

GO:0008652 amino acid

biosynthesis



GO:00042401

biogenic amine synthesis

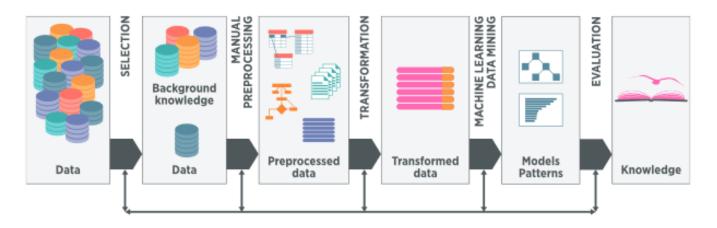
Third Generation Machine Learning

Developed since 2010s:

- Focused on big data analytics
- Addressing complex data mining tasks and scenarios
- New conferences on data science and big data analytics; e.g., IEEE Big Data, Complex networks, ...
- New learning tasks and efficient learning algorithms:
 - Analysis of dynamic data streams, Network analysis, Text mining, Semantic data analysis, ...
- Lots of emphasis on automated data transformation
 - Propositionalization of relational data, of heterogeneous information networks, ...
 - Embedding of texts, networks, knowledge graphs, entities (features), ... is highly popular in the last few years



Representation Learning

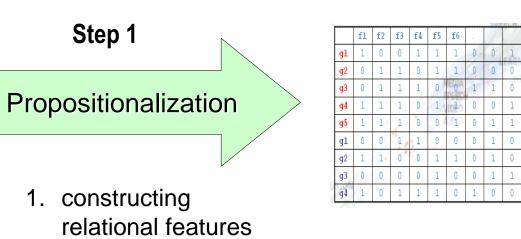


- Representation learning = Automated data transformation, performed on manually preprocessed data
- Transformation requires handling heterogeneous data
 - Data (feature vectors, documents, pictures, data streams, ...)
 - Background knowledge (multi-relational data tables, networks, text corpora, ...)
- Propositionalization:
 - Multi-relational data transformation

Propositionalization: Data transformation for Relational Learning

							_				
					custo		_	_		_	
		ID /	Zip	S ez	x So St	In com	e	A ge	Cl ub	$_{ m sp}^{ m Re}$	
	1	·									
	/	3478	34677	m	ısi	60-7	0	32	me	nr	
/	/	3479	43666	f	ma	80-9	0	45	nn	re	
					.						
			order								
Customer ID	Qr.	der	$\frac{\text{Store}}{\text{ID}}$	Ŀ	Deliv	ery	Ρ	ayı	\mathbf{nt}		
ш	րո		шţ	1	Mode		M	lód	e		
			\	Ţ							
3478	214	10267	12	۱þ	regula	ur	c	ash			
3478	344	16778	12	۱ŀ	expre	SS	cl	hec	k		
3478	472	28386	17	þ	regula	ur	c]	hec	k		
3479	323	33444	17	P	expre	ss	credit		it		
3479	347	75886	12	þ	regula	ır	сı	credit			
				ŀ							
	-				1						
					1						
					\Box		_			tore	
					Sto	re II)	Siz	e '	Туре	Location
					12		- 1			franchise	
					17			lar	ge i	indep	rural
							- 1				

Relational representation of customers, orders and stores.



2. constructing a propositional table

63

fn

Propositionalization: Data transformation for Relational Learning

				C	1 sto	mer			
		ID /	Zip	S ex	$_{\rm St}^{\rm So}$	In come	ge	Cl ub	Re sp
	/								
	/		34677		si	60-70			
/	·	3479	43666	f	\mathbf{ma}	80-90) 45	nm	re
_/									
			order						
Customer	Order ID		Store ID \		eliv	ery	Payr		
ш			m ł	IV	lode	: I	Mod	e	
			\						
3478	214	10267	12	Ire.	gula	ar (ash		
3478	344	6778	12	\ e:	spre	ss (hec	k	
3478	472	8386	17	Ire	gula	ar (hec	k	
3479	323	3444	17	-le:	rpre	ss (red	it	
3479	347	5886	12	h	gula	ar (red	it	
)	'	۲.				
					1				
					1				
					\Box			s	tore
					Sto	re ID	Siz	e /	Гур
					12		\mathbf{sm}	all	fran

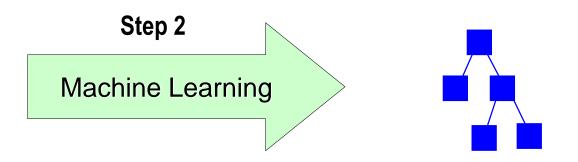
Relational representation of customers, orders and stores.

Location ... city rural

	f1	f2	f3	f4	f5	f 6		10		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	001	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

	f1	f2	f3	f4	f5	f 6		11		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	0010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1



model, patterns, ...

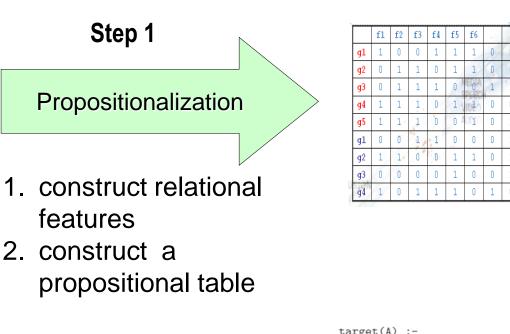
Propositionalization: Data transformation for Relational Learning

				c	usto	mer					
		ID 1	Zip	S ex	$_{\rm St}^{\rm So}$	\lim_{con}	ıe	A ge	Cl ub	$_{ m sp}^{ m Re}$	
	/		 34677			 60-1					
/		3479	43666	f 	ma	80-9	20	45	nm	re 	
					1.0					<u> </u>	
			order								
Customer ID	Or ID	der	$\frac{\text{Store}}{D}$	Г М	eliv lode	ery	P; M	ayn lod	nt e		
 3478	 214	10267	12		egula	ar	 са	sh			
3478	344	16778	12	∖le	xpre	SS		lec]	_		
3478 3479		28386 33444		- N	egula xpre			iec] edi	_		
3479		75886			egula			edi			
					+						
					1						
					I					tore	
					Sto	re 🛛	D	Size	e '	Туре	Lo
					12					franchise	
					17		i1	ar	wo li	indep	ru

Relational representation of customers, orders and stores.

	f1	f2	f3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	nd 1 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Location



Step 2 Subgroup discovery

```
target(A) :-
   'Doctor'(A), 'Italy'(A).
```

```
target(A) :-
   'Public'(A), 'Gold'(A).
```

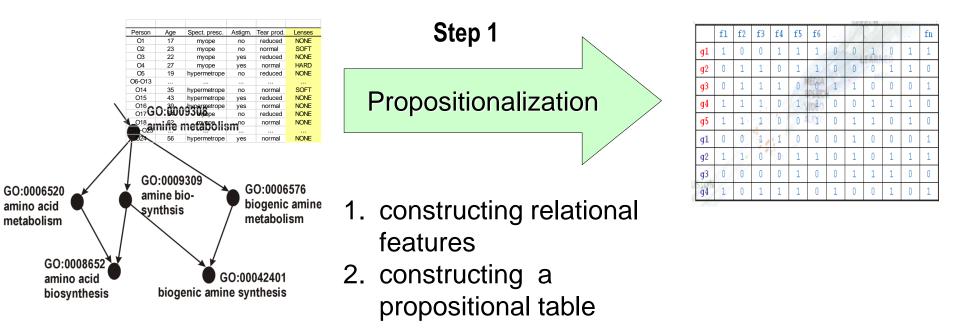
```
target(A) :-
   'Poland'(A), 'Deposit'(A), 'Gold'(A).
```

fn

```
target(A) :-
   'Germany'(A), 'Insurance'(A).
```

```
target(A) :-
  'Service'(A), 'Germany'(A).
patterns (set of rules)
```

Propositionalization: Data transformation for Semantic Data Mining



The approach: Using relational subgroup discovery in the SDM context

- General purpose system RSD for Relational Subgroup Discovery, using a propositionalization approach to relational data mining
- Applied to semantic data mining in a biomedical application by using the Gene Ontology as background knowledge in analyzing microarray data

Železny and Lavrac, MLJ 2006

Text mining: Viewed in propositionalization context: BoW data transformation

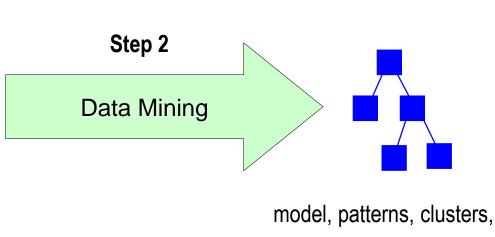
BoW vector construction

Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



BoW construction: Feature weights and Cosine similarity between document vectors

- Each document D is represented as a vector of TF-IDF weights $tfidf(w) = tf \cdot \log(\frac{N}{df(w)})$
- Similarity between two vectors is estimated by the similarity between their vector representations (cosine of the angle between the two vectors):

Similarity
$$(D_1, D_2) = \frac{\sum_{i} x_{1i} x_{2i}}{\sqrt{\sum_{j} x_j^2} \sqrt{\sum_{k} x_k^2}}$$

Embeddings-based Data Transformation for Text mining

 Corpus embedding, Document embedding, Sentence embedding, word embedding (e.g., word2vec)

> • Transforming documents by projecting documents into vectors (rows of a data table)

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Embeddings-based Data Transformation for Text mining

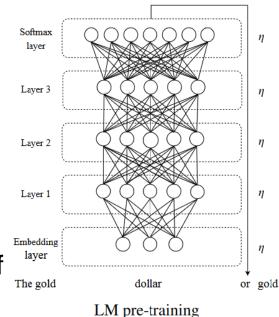
 Corpus embedding, Document embedding, Sentence embedding, word embedding

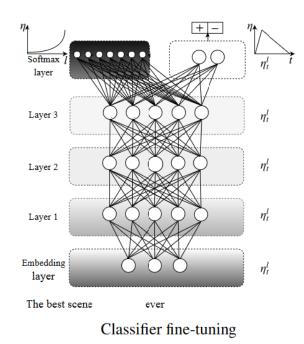
(e.g., word2vec)

 Transforming documents by projecting documents into vectors (rows of a data table)

 Weights correspond to weights in the embedding layer of a neural network

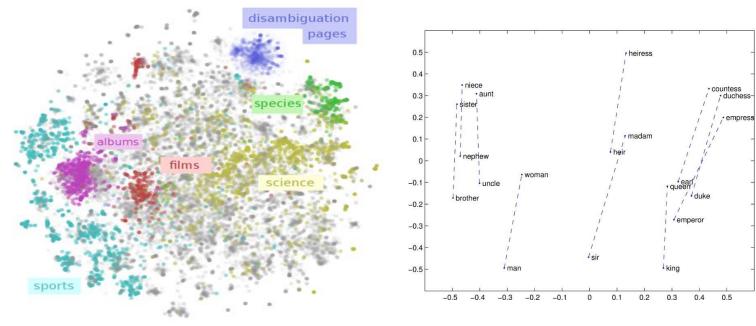
Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO





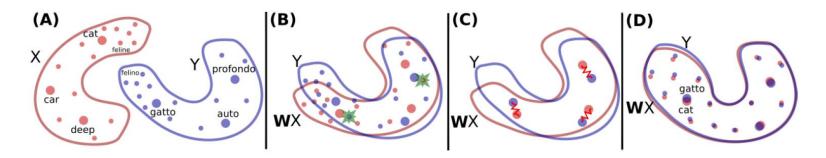
Embedding-based Data Transformation for Text mining

- Corpus embedding, Document embedding, Sentence embedding, word embedding, ...
 - Representations of word meaning obtained from corpus statistics
 - Spatial relationships correspond to linguistic relationships



Cross-domain or cross-lingual Embeddingsbased Data Transformation for Text mining

Aligning embedding spaces across domains or languages



- EMBEDDIA H2020 project (2019-2021) coordinated by Jožef Stefan Institute: Cross-lingual embeddings for less-represented languages in news media industry
 - developing new language models for less represented languages
 - Using advanced embedding models like GloVe and contextual embedding models like **Bert** in news analysis applications and in UGC commentary filtering

Part I: Summary

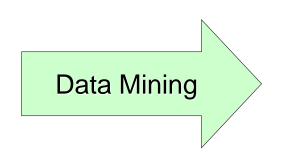
- KDD is the overall process of discovering useful knowledge in data
 - many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD
 - DM takes only 15%-25% of the effort of the overall KDD process
 - employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas, many powerful tools available

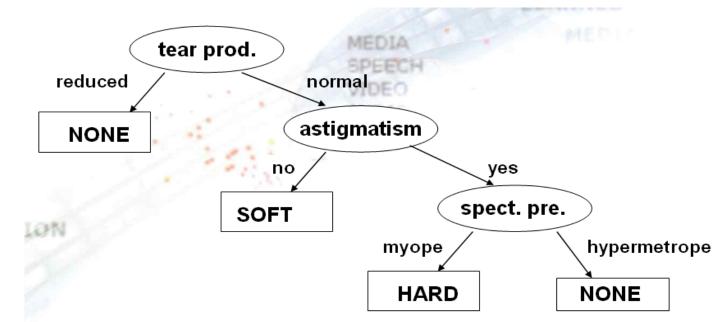
Outline

- Introduction to Machine Learning and Data Mining: Techniques overview
- Rule learning
- Relational learning: Propositionalization
- Semantic data mining
- Relational learning: Wordification

Learning a classification model from contact lens data

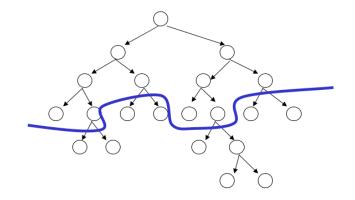
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
O2	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
O14	ore-presby	hypermetrope	no	normal	SOFT
O15	ore-presby	hypermetrope	yes	reduced	NONE
O16	ore-presbyc	hypermetrope	yes	normal	NONE
O17	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE

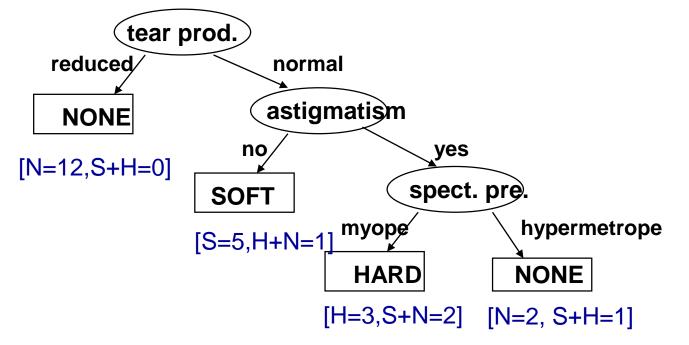




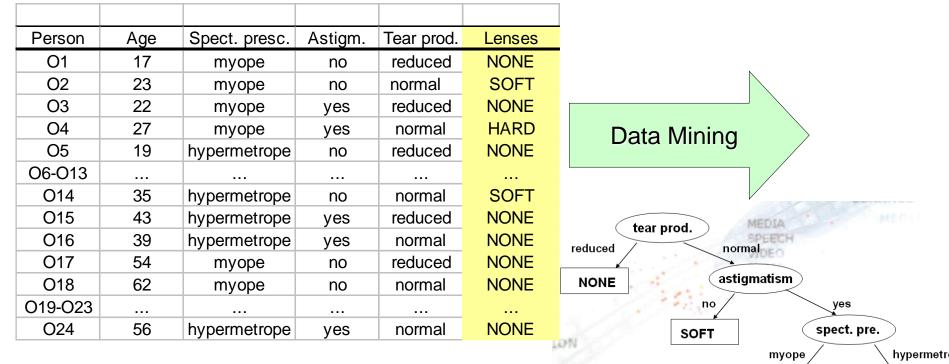
Decision tree learning and pruning

- Top-down construction of decision trees
- Tree pruning to avoid data overfitting
- Pruned trees are
 - less accurate on training data
 - more accurate o in classifying unseen data





Learning a classification model from contact lens data



- lenses=NONE ← tear production=red
- lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope

NONE

HARD

- lenses=SOFT ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $lenses=NONE \leftarrow$

Converting decision tree to rules, and rule post-pruning (Quinlan 1993)

- Very frequently used method, e.g., in C4.5 and J48
- Procedure:
 - grow a full tree (allowing overfitting)
 - convert the tree to an equivalent set of rules
 - prune each rule independently of others
 - sort final rules into a desired sequence for use

Learning decision trees Survey data

female

0.000

2.0

yes

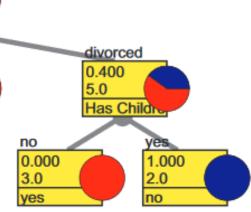
EducationMarital StatusSexHas ChildrenApprovedprimarysinglemalenonoprimarysinglemaleyesnoprimarymarriedmalenoyesuniversitydivorcedfemalenoyesuniversitymarriedfemaleyesyessecondarysinglefemalenoyessecondarydivorcedfemalenoyessecondarysinglefemalenoyessecondarydivorcedfemaleyesyessecondarymarriedmaleyesyessecondarymarriedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedmaleyesnouniversitydivorcedmaleyesnosecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyessecondarydivorcedfemalenoyes					
primary single male yes no primary married male no yes university divorced female no yes university married female yes yes secondary single male no no university single female no yes secondary divorced female no yes secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female no yes secondary divorced male yes no university divorced male yes no university divorced male yes no secondary divorced male yes no university divorced male no yes	Education	Marital Status	Sex	Has Children	Approved
primary married male no yes university divorced female no yes university married female yes yes secondary single male no no university single female no yes secondary divorced female no yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female no yes secondary divorced male yes no secondary divorced male yes no university divorced male yes no secondary divorced female no yes	primary	single	male	no	no
university divorced female no yes university married female yes yes secondary single male no no university single female no yes secondary divorced female no yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male yes no secondary divorced male yes no secondary divorced female no yes	primary	single	male	yes	no
university married female yes yes secondary single male no no university single female no yes secondary divorced female no yes secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male yes no secondary divorced female yes no secondary divorced female yes no	primary	married	male	no	yes
secondary single male no no university single female no yes secondary divorced female no yes secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	university	divorced	female	no	yes
university single female no yes secondary divorced female no yes secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	university	married	female	yes	yes
secondary divorced female no yes secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	secondary	single	male	no	no
secondary single female yes yes secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	university	single	female	no	yes
secondary married male yes yes primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	secondary	divorced	female	no	yes
primary married female no yes secondary divorced male yes no university divorced female yes no secondary divorced male no yes	secondary	single	female	yes	yes
secondary divorced male yes no university divorced female yes no secondary divorced male no yes	secondary	married	male	yes	yes
university divorced female yes no secondary divorced male no yes	primary	married	female	no	yes
secondary divorced male no yes	secondary	divorced	male	yes	no
single 0.600 5.0	university	divorced	female	yes	no
0.600	secondary	divorced	male	no	yes
0.600					
0.600					
0.600				single	
				0.600	
Sex					
				Sex	

male

3.0

no

1.000



Transforming trees to rules: Survey data

THEN Approved = no

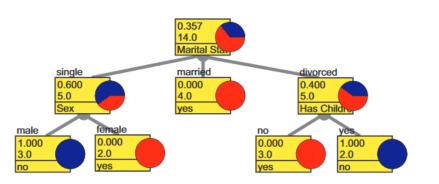
AND HasChildren = no THEN Approved = yes

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

AND	MaritalStatus = single Sex = female Approved = yes	
AND	MaritalStatus = single Sex = male Approved = no	
	MaritalStatus = married Approved = yes	
	MaritalStatus = divorced HasChildren = yes	

IF MaritalStatus = divorced

yes (2/9)	no (0/5)
	-
yes (0/9)	no (3/5)
yes (4/9)	no (0/5)
yes (0/9)	no (2/5)
	•
yes (3/9)	no (0/5)



yes (3/9)	no (0/5)

Pruning classification rules: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

AND	MaritalStatus = single Sex = female Approved = yes	yes (2/9)
AND	MaritalStatus = single Sex = male Approved = no	yes (0/9)
	MaritalStatus = married Approved = yes	yes (4/9)
	MaritalStatus = divorced HasChildren = yes Approved = no	yes (0/9)

IF	MaritalStatus = divorced
AND	HasChildren = no
THEN	Approved = yes

yes (4/9)

no (2/5)

yes (3/9)	no (0/5)

MaritalStatus = married Approved = yes	
Sex = female Approved = yes	Ľ
Sex = male Approved = no	Ľ

yes (6/9)	no (1/5)
////////	

no (0/5)

yes (3/9)	no (4/5)

DEFAULT Approved = yes 81

no (0/5)

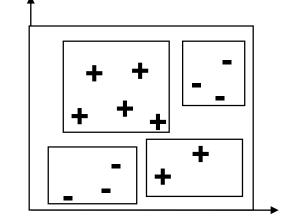
no (3/5)

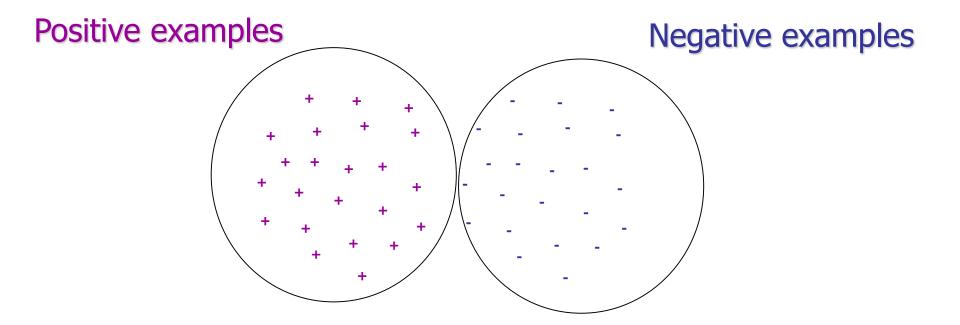
no(0/5)

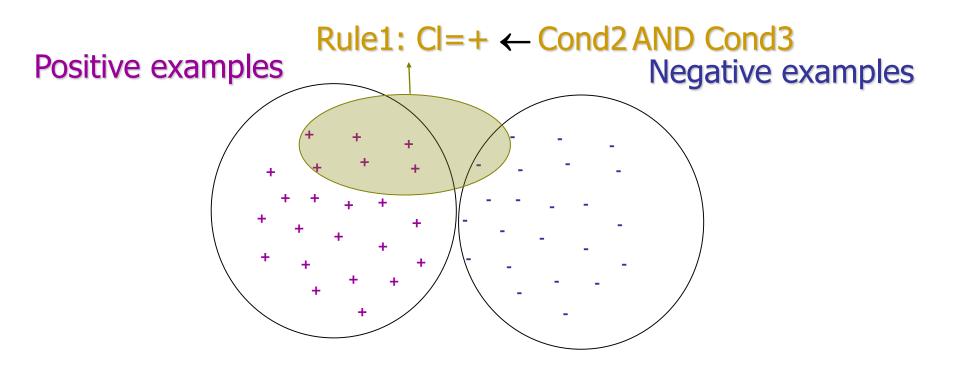
Covering algorithm for binary classification problems (AQ, Michalski 1969,86)

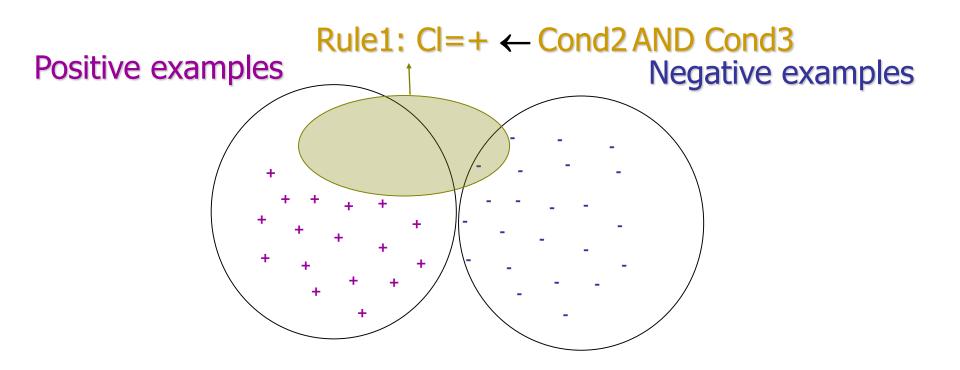
Given examples of 2 classes C₁, C₂ **for** each class Ci **do**

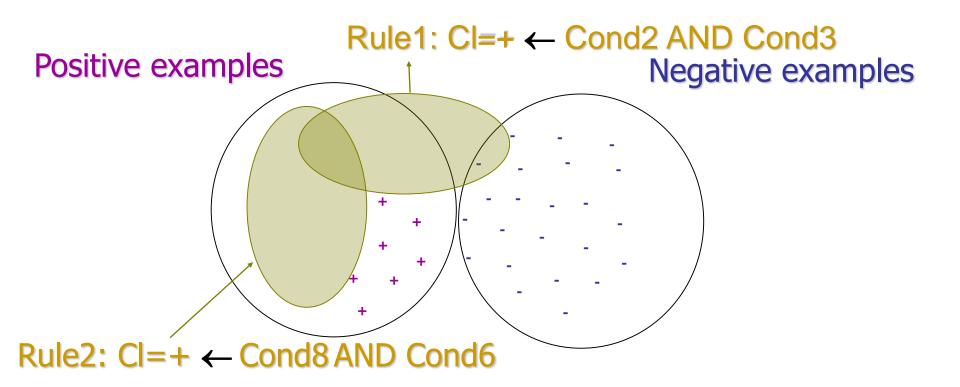
- Ei := Pi U Ni (Pi pos., Ni neg.)
- RuleBase(Ci) := empty
- repeat {learn-set-of-rules}
 - learn-one-rule R covering some positive examples and no negatives
 - add R to RuleBase(Ci)
 - delete from Pi all pos. ex. covered by R
- **until** Pi = empty



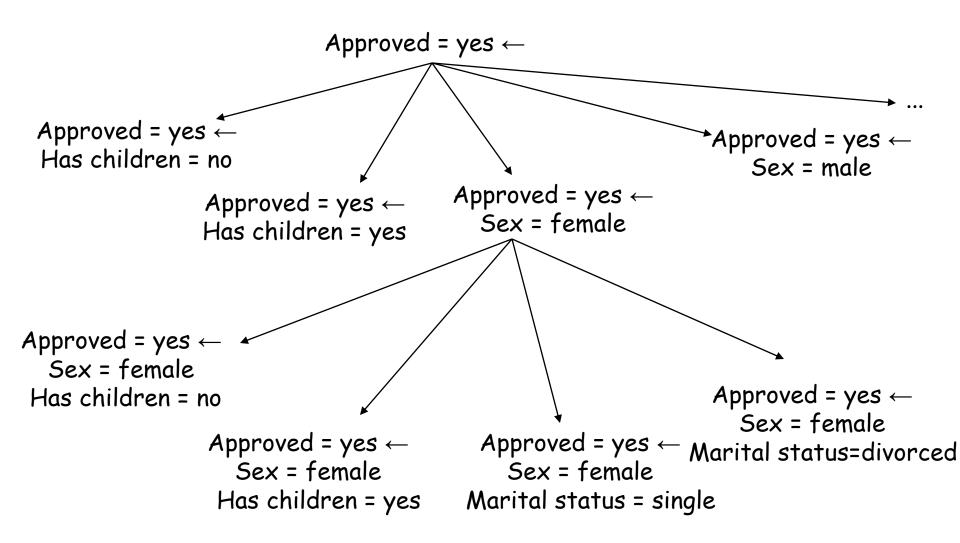




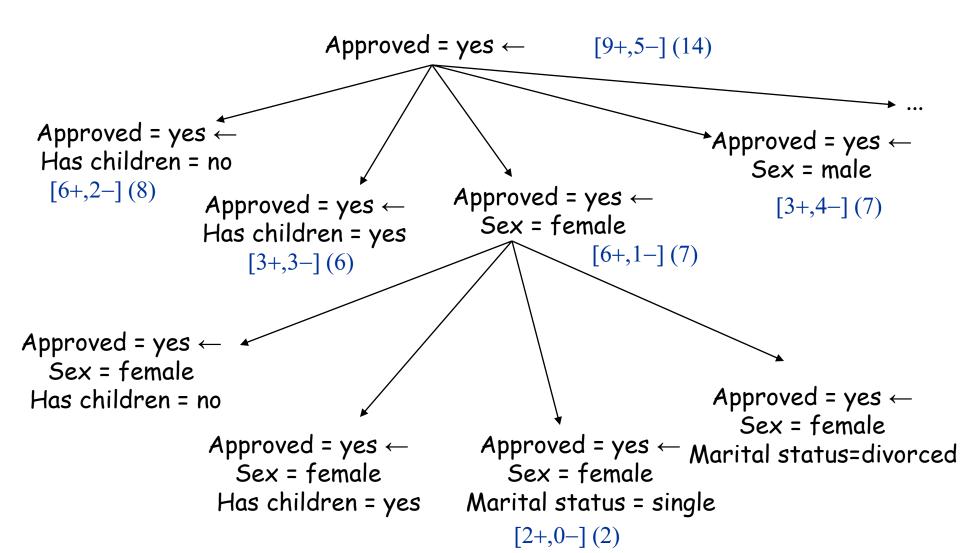




Learn-one-rule as heuristic search: Survey data



Learn-one-rule as heuristic search: Survey data



Rule evaluation measures

- Evaluation measures for rules Cl ← Cond
 - aimed at maximizing classification accuracy
 - minimizing Error = 1 Accuracy
 - avoiding overfitting
- Expected accuracy/precision: A(R) = p(CI|Cond)
- Traded off measures:

- Relative accuracy/precision: RAcc(CI \leftarrow Cond) = p(CI | Cond) – p(CI) trade-off against the "default" accuracy of rule CI \leftarrow true (e.g., 68% accuracy is OK if there are 20% examples of that class in the training set, but bad if there are 80%)

Weighted relative accuracy: WRAcc(R) = p(Cond).(p(Cl | Cond) - p(Cl))
 trades off coverage and relative accuracy

Accuracy gain: AG(R',R) = p(CI | NewCond) - p(CI | CurrentCond)
 increase in expected accuracy after rule specialization

Ordered set of rules: if-then-else rules

- rule Class IF Conditions is learned by first determining Conditions and then Class
- Notice: mixed sequence of classes C1, ..., Cn in RuleBase
- But: ordered execution when classifying a new instance: rules are sequentially tried and the first rule that `fires' (covers the example) is used for classification
- Decision list {R1, R2, R3, ..., D}: rules Ri are interpreted as if-then-else rules
- If no rule fires, then DefaultClass (majority class in $\rm E_{\rm cur})$

Sequential covering algorithm

- RuleBase := empty
- E_{cur}:= E
- repeat
 - learn-one-rule R
 - RuleBase := RuleBase U R
 - E_{cur} := E_{cur} {examples covered and correctly classified by R} (DELETE ONLY POS. EX.!)
 - until performance(R, E_{cur}) < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- return RuleBase

Learn ordered set of rules (CN2, Clark and Niblett 1989)

- RuleBase := empty
- E_{cur}:= E
- repeat
 - learn-one-rule R
 - RuleBase := RuleBase U R
- **until** performance(R, E_{cur}) < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- RuleBase := RuleBase U DefaultRule(E_{cur})

Learn-one-rule: Beam search in CN2

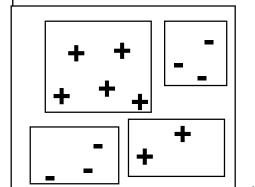
- Beam search in CN2 learn-one-rule algo .:
 - construct BeamSize of best rule bodies (conjunctive conditions) that are statistically significant
 - BestBody min. entropy of examples covered by Body
 - construct best rule R := Head ← BestBody by adding majority class of examples covered by BestBody in rule Head

Variations

- Sequential vs. simultaneous covering of data (as in TDIDT): choosing between attribute-values vs. choosing attributes
- Learning rules vs. learning decision trees and converting them to rules
- Pre-pruning vs. post-pruning of rules
- What statistical evaluation functions to use
- Probabilistic classification
- Best performing rule learning algorithm: Ripper
- JRip implementation of Ripper in WEKA, available in ClowdFlows

Covering algorithm for multiclass learning (AQ, Michalski 1969,86)

- **Given** examples of N classes C_1, \ldots, C_N for each class Ci do
 - Ei := Pi U Ni (Pi pos., Ni neg.)
 - RuleBase(Ci) := empty
 - repeat {learn-set-of-rules}
 - learn-one-rule R covering some positive examples and no negatives
 - add R to RuleBase(Ci)
 - delete from Pi all pos. ex. covered by R
 - **until** Pi = empty



Multi-class learning: One-against-all learning strategy

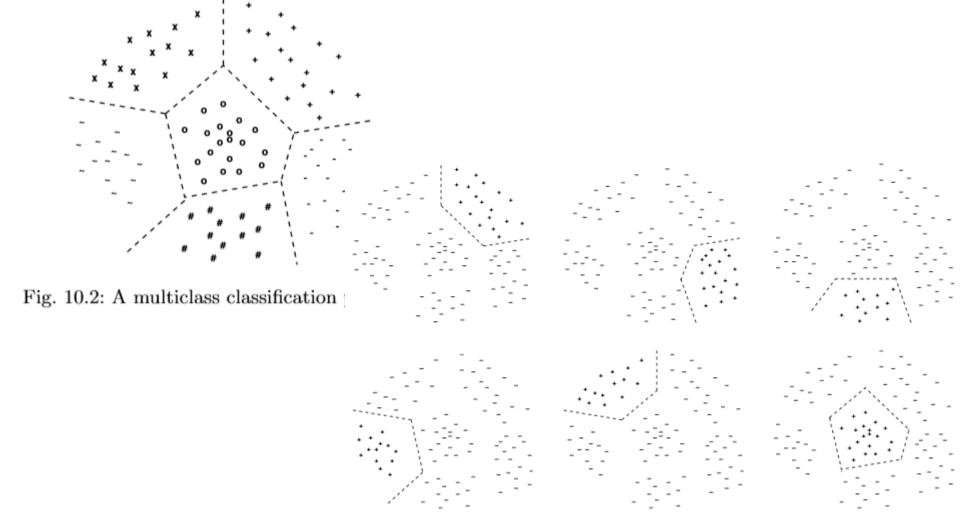


Fig. 10.4: The six binary learning problems that are the result of one-against-all class binarization of the multiclass dataset of Figure 10.2.

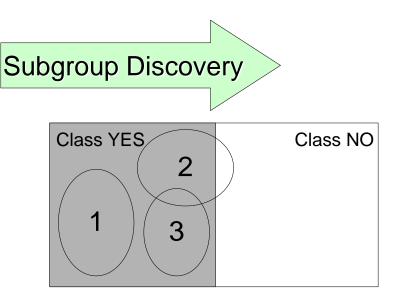
CN2 rule learner in Orange

CN2 Rule Induction

CN2 Rule Induct	tion	?	×
Name			
CN2 rule inducer			
Rule ordering	Covering a	lgorithm	
Ordered	Exclusiv	e	
	O Weighte	ed v: 0.7	70 🗘
Rule search			
Evaluation measure:	Entrop	ру	-
Beam width:			5 🗘
Rule filtering Minimum rule coverag	je:		1 🕏
Maximum rule length:	:		5 🗘
Statistical signification (default o):	ance	1	.00 🗘
Relative significar (parent o):	nce	1	.00 🗘
Ap Ap	ply Automat	tically	
)			

Subgroup Discovery

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

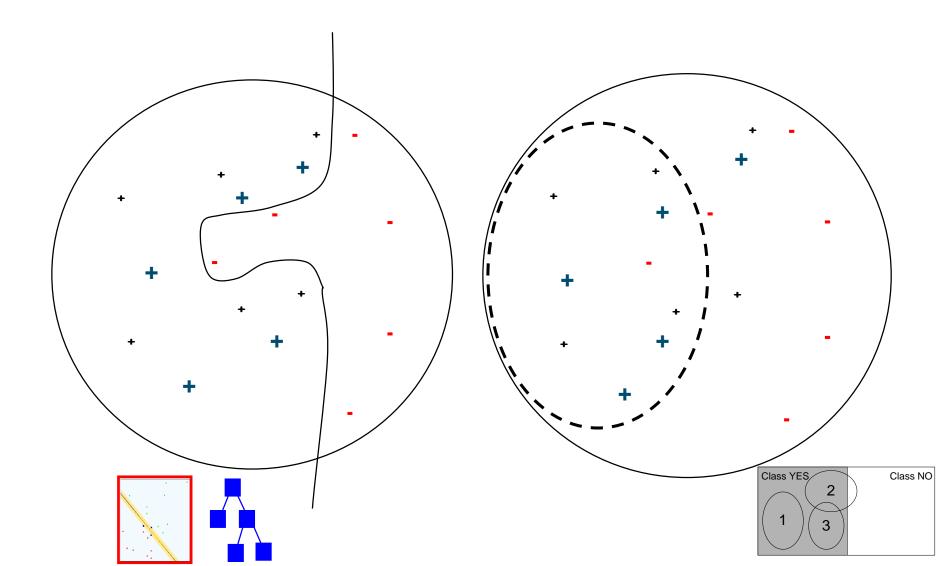


- A task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

Classification versus Subgroup Discovery

- Classification (predictive induction) constructing sets of classification rules
 - aimed at learning a model for classification or prediction
 - rules are dependent
- Subgroup discovery (descriptive induction) constructing individual subgroup describing rules
 - aimed at finding interesting patterns in target class examples
 - large subgroups (high target class coverage)
 - with significantly different distribution of target class examples (high TP/FP ratio, high significance, high WRAcc
 - each rule (pattern) is an independent chunk of knowledge

Classification versus Subgroup discovery



Subgroup discovery in High CHD Risk Group Detection

Input: Patient records described by anamnestic, laboratory and ECG attributes

- **Task**: Find and characterize population subgroups with high CHD risk (large enough, distributionaly unusual)
- From **best induced descriptions**, five were selected by the expert as **most actionable** for CHD risk screening (by GPs): high-CHD-risk ← male & pos. fam. history & age > 46 high-CHD-risk ← female & bodymassIndex > 25 & age > 63 high-CHD-risk ← ... high-CHD-risk ← ...

(Gamberger & Lavrač, JAIR 2002)

Subgroup discovery: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

Approved = yes \leftarrow Sex = female Approved = yes \leftarrow Marital status = married Approved = yes \leftarrow Marital status = divorced & Has children = no Approved = yes \leftarrow Education = university

Selected rules discovered by Apriori-SD subgroup discovery algorithm.

Subgroup discovery: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

ΙF

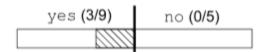
AND	MaritalStatus = single Sex = female Approved = yes	yes (2/9)	no (0/5)
AND	MaritalStatus = single Sex = male Approved = no	yes (0/9)	no (3/5)
	MaritalStatus = married Approved = yes	yes (4/9)	no (0/5)
AND	MaritalStatus = divorced HasChildren = yes Approved = no	yes (0/9)	no (2/5)

```
IF
                                MaritalStatus = divorced
                                                                yes (3/9)
                            AND HasChildren = no
                           THEN Approved = yes
                                                     no (0/5)
                                         yes (4/9)
     MaritalStatus = married
THEN Approved = yes
```

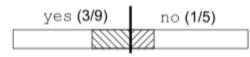
```
ΤF
     MaritalStatus = divorced
AND HasChildren = no
THEN Approved = yes
```

```
IF
    Sex = female
THEN Approved = yes
```

```
ΙF
     Education = university
THEN Approved = yes
```



yes (6/9)	no (1/5)



no (0/5)

Classification Rule Learning for Subgroup Discovery: Deficiencies

- Only first few rules induced by the covering algorithm have sufficient support (coverage)
- Subsequent rules are induced from smaller and strongly biased example subsets (pos. examples not covered by previously induced rules), which hinders their ability to detect population subgroups
- 'Ordered' rules are induced and interpreted sequentially as a if-then-else decision list

CN2-SD: Adapting CN2 Rule Learning to Subgroup Discovery

- Weighted covering algorithm
- Weighted relative accuracy (WRAcc) search heuristics, with added example weights
- Probabilistic classification
- Evaluation with different interestingness measures

CN2-SD: CN2 Adaptations

- General-to-specific search (beam search) for best rules
- Rule quality measure:
 - CN2: Laplace: Acc(Class ← Cond) =

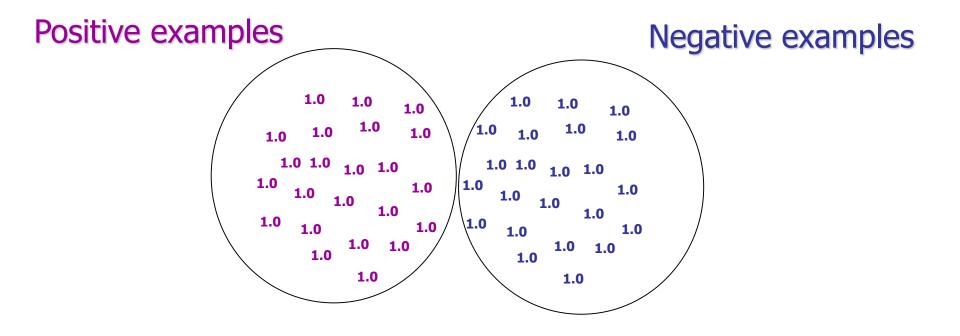
= $p(Class|Cond) = (n_c+1) / (n_{rule}+k)$

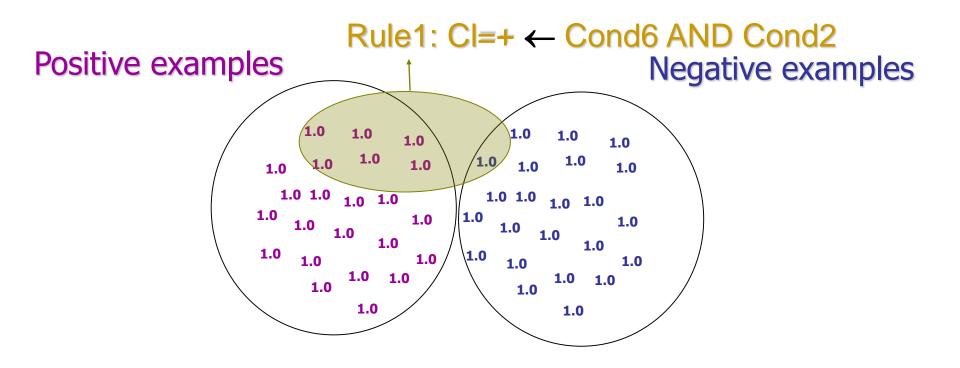
- CN2-SD: Weighted Relative Accuracy
 WRAcc(Class ← Cond) =
 p(Cond) (p(Class|Cond) p(Class))
- Weighted covering approach (example weights)
- Significance testing (likelihood ratio statistics)
- Output: Unordered rule sets (probabilistic classification)

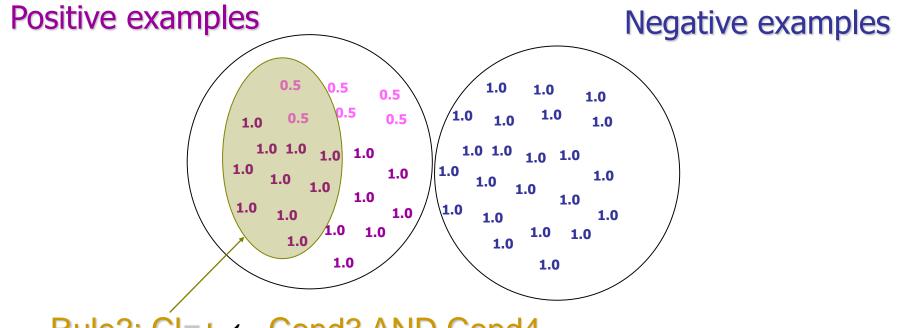
CN2-SD: Weighted Covering

- Standard covering approach: covered examples are deleted from current training set
- Weighted covering approach:
 - weights assigned to examples
 - covered pos. examples are re-weighted: in all covering loop iterations, store count i how many times (with how many rules induced so far) a pos. example has been covered: w(e,i), w(e,0)=1
 - Additive weights: w(e,i) = 1/(i+1)
 w(e,i) pos. example e being covered i times

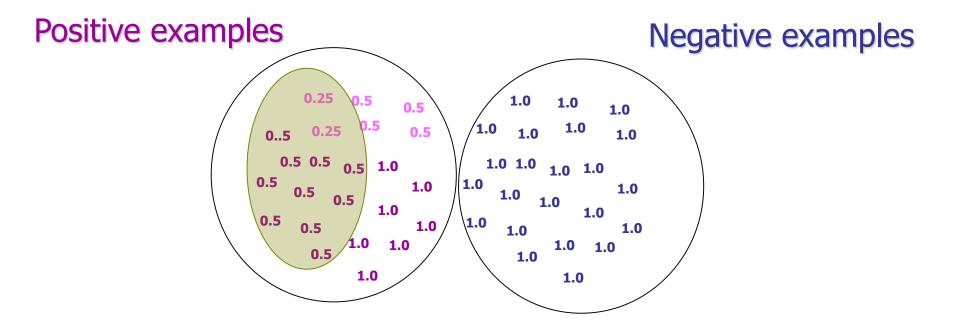
Subgroup Discovery







Rule2: Cl=+ ← Cond3 AND Cond4



CN2-SD: Weighted WRAcc Search¹¹² Heuristic

 Weighted relative accuracy (WRAcc) search heuristics, with added example weights
 WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal accuracy (PKDD-2000)

 In WRAcc computation, probabilities are estimated with relative frequencies, adapt:

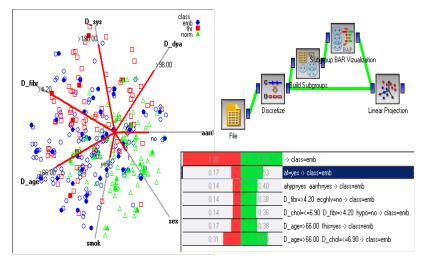
$$\begin{split} WRAcc(CI \leftarrow Cond) &= p(Cond) \ (p(CI|Cond) - p(CI)) = \\ n'(Cond)/N' \ (n'(CI.Cond)/n'(Cond) - n'(CI)/N' \) \end{split}$$

- N' : sum of weights of examples
- n'(Cond) : sum of weights of all covered examples
- n'(Cl.Cond) : sum of weights of all correctly covered examples

SD algorithms in the Orange DM Platform

• Orange data mining toolkit

- classification and subgroup discovery algorithms
- data mining workflows
- visualization



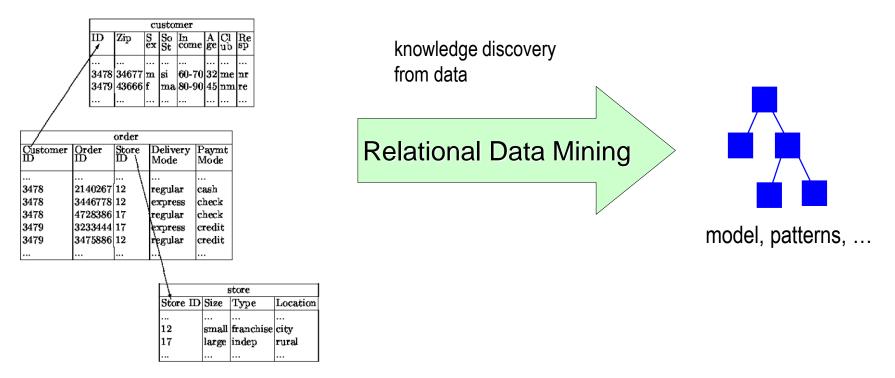
SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002)
- Apriori-SD (Kavšek & Lavrač, AAI 2006)
- CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery

Outline

- Introduction to Machine Learning and Data Mining: Techniques overview
- Rule learning
- Relational learning: Propositionalization
- Semantic data mining
- Relational learning: Wordification

Relational Data Mining (Inductive Logic Programming) task

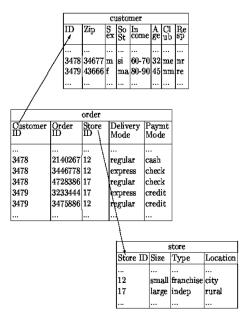


Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical facts, a graph, ... **Find:** a classification model, a set of interesting patterns

Relational data mining

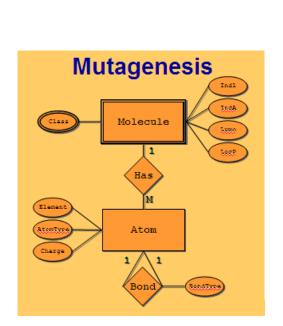
- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data

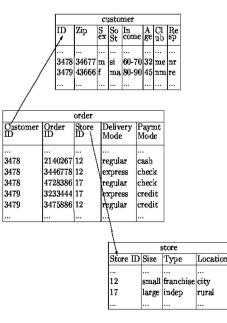


Relational representation of customers, orders and stores.

Relational data mining

- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data
 - Learning from complex structured data: e.g., molecules and their biochemical properties



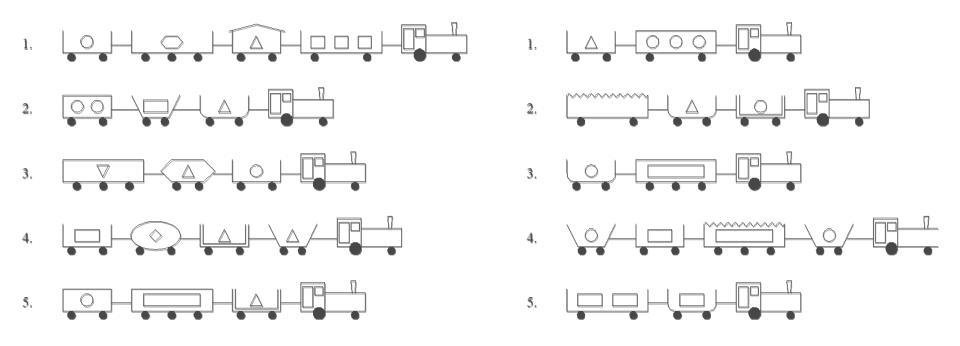


Relational representation of customers, orders and stores.

Sample problem: East-West trains

1. TRAINS GOING EAST

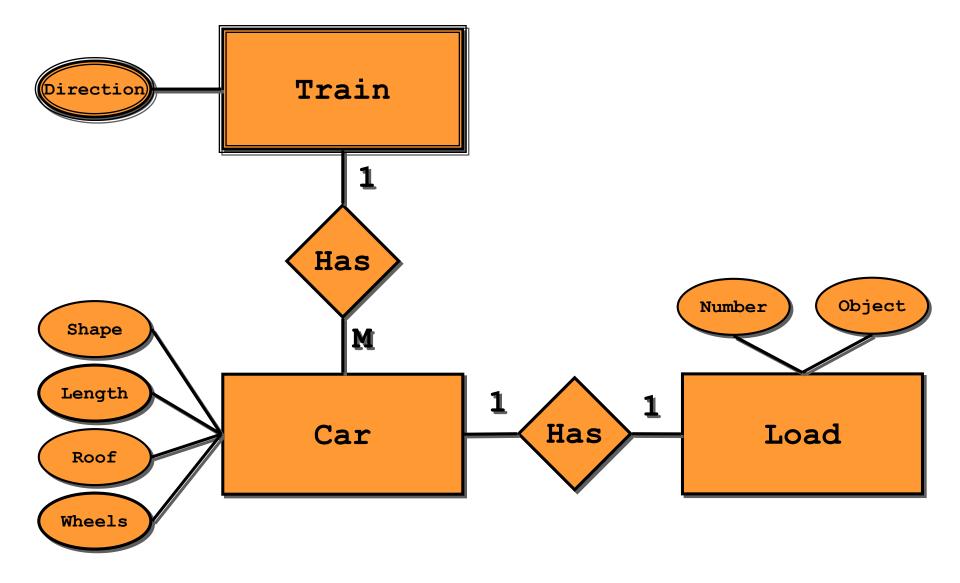
2. TRAINS GOING WEST



RDM knowledge representation (database)

LOAD	TABL	Æ					1	RAIN	TABLE
LOAD	CAR	OBJECT	NUMBER				7	TRAIN	EASTBOUND
l1	c1	circle	1					t 1	TRUE
12	c2	hexagon	1					t2	TRUE
13	c3	t riangl e	1						
14	c4	rect angle	3					t6	FALSE
		CA							
		<u>CA</u>	<u>R</u> TRAIN	SHA PE	LENGTH	ROOF	WHEELS	S	
		c1	t 1	rect angle	short	none	2		
		c2	t1	rect angle	long	none	3		
		c3	t1	rect angle	short	peaked	2	- I	
		c4	t1	rect angle	long	none	2		

ER diagram for East-West trains



Relational data mining

- Relational data mining is characterized by using background knowledge (domain knowledge) in the data mining process
- Selected approaches:
 - Inductive logic programming ILP (Muggleton, 1991; Lavrač & Džeroski 1994), ...
 - Relational learning (Quinlan, 1993)
 - Learning in DL (Lisi 2004), ...
 - Relational Data Mining (Džeroski & Lavrač, 2001),
 - Statistical relational learning (Domingos, De Raedt...)
 - Propositionalization approach to RDM (Lavrač et al.)

Our early work: Semantic subgroup discovery

- Propositionalization approach: Using relational subgroup discovery in the SDM context
 - General purpose system RSD for Relational Subgroup Discovery, using a propositionalization approach to relational data mining
 - Applied to semantic data mining in a biomedical application by using the Gene Ontology as background knowledge in analyzing microarray data

(Železny and Lavrač, MLJ 2006)

		<u> </u>									
				-	usto	mer					
		ID /	Zip	S ex	$_{\rm St}^{\rm So}$	$\frac{\ln}{\cos}$	ne	A ge	Cl ub	$\mathbf{Re}_{\mathbf{sp}}$	
	/	·									
	/	3478	34677	m	si	60-	70	32	me	e nr	
/	/	3479	43666	f	ma	80-	90	45	nn	are	
		-						-			
/										1	
			order								
Customer ID	踞	der	$\frac{\text{Store}}{D}$)eliv Aode			'ayı lod			
			\	1.						1	
3478	214	10267	12	r	egula	h.	c	ash			
3478	344	16778	12	\le	xpre	SS	c	heci	k		
3478	472	28386	17		egula		c	hec	k		
3479	323	33444	17	- N	xpre		c	redi	it		
3479	347	75886	12	r,	egula	ır	c	redi	it		
]		4						
										-	
					ΓŢ				s	tore	
					Sto	re I	D	Siz	e	Туре	Lo
					12			\mathbf{sm}	all	franchise	cit

Relational representation of customers, orders and stores.

17

large indep

Location

rural

Step 1 Propositionalization

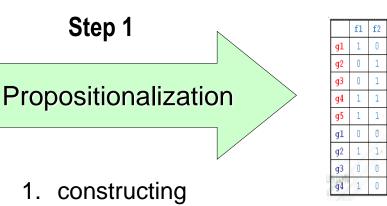
ι,													
		f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
	g1	1	0	0	1	1	1	0	0	1	0	1	1
	g2	0	1	1	0	1	1	0	0	0	1	1	0
	g3	0	1	1	1	0	0	1	1	0	0	0	1
	g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
	g5	1	1	1	0	0 /	001	0	1	1	0	1	0
	g1	0	٥	1	1	0	0	0	1	0	0	0	1
	g2	1	1	0	0	1	1	0	1	0	1	1	1
	g3	0	0	0	0	1	0	0	1	1	1	0	0
1	g4	1	0	1	1	1	0	1	0	0	1	0	1

					isto	mer			
		-					1.		1
		ID /	Zip	S ex	$_{\rm St}^{\rm So}$	$\frac{\ln}{\cos \theta}$	ge	Cl ub	$_{ m sp}^{ m Re}$
	/	1							
	/	3478	34677	m		60-70			
/	/	3479	43666	f	\mathbf{ma}	80-90) 45	nm	re
/									
_/			order						
Customer	0-			Тг	eliv	0.000	Pay	nt	
Customer D	Б	uer	$\frac{\text{Store}}{D}$	N	lode		Mod	le	
			\						
3478	214	10267	12 \	(re	egula	ar	ash		
3478	344	16778	12	\ e:	xpre	ss (hec	k	
3478	472	28386	17	Ire	gula	ar	hec	k	
3479	323	33444	17	e:	xpre	ss (red	it	
3479	347	75886	12	h	gula	ar (red	it	
]	.	ł				
					1				
					Ц			s	tore
					Sto	re ID	Siz	e /	Гуре
					12		\mathbf{sm}	all	iranchi
					17		lar	ge ji	indep
								- 1	-

Relational representation of customers, orders and stores.

Location

city rural



- relational features
- 2. constructing a propositional table

	f1	f2	f3	f4	f5	f 6		11		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	oson	0	0	1	1	1	0
g5	1	1	1	0	0	0010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

				Cl	1 sto	mer			
		ID ∮	Zip	S ex	$_{\rm St}^{\rm So}$	In come	e ge	Cl ub	Re
	/	ľ					·		
	/	3478	34677	m	si	60-7	0 32	me	e nr
/	/	3479	43666	f	\mathbf{ma}	80-9	0 45	nn	a re
			order]
Customer ID	B	der	Store ID \	D	eliv	ery 🛛	Payı	\mathbf{nt}	1
ш	րո		m /	M	lode	: 1	Mod	e	
			\						1
3478	214	10267	12	re	gula	ar (cash		
3478	344	16778	12	\ e:	rpre	ss	chec	k	
3478	472	28386	17	Ire	gula	ar	chec	k	
3479	323	33444	17	- le:	spre	ss	cred	it	
3479	347	75886	12	r,	gula	ar	cred	it	
				'	1				
					1				
					$ \bot $				
					1				tore
					Sto	re ID	Siz	e	Туре
					12		\mathbf{sm}	all	franci
					17		ar	ge	indep

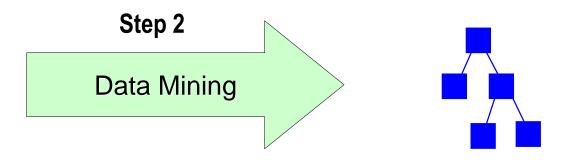
Relational representation of customers, orders and stores.

Location ... e city rural

	f1	f2	f3	f4	f5	f 6		10		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1010	0	0	1	1	1	0
g5	1	1	1	0	0 /	001	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

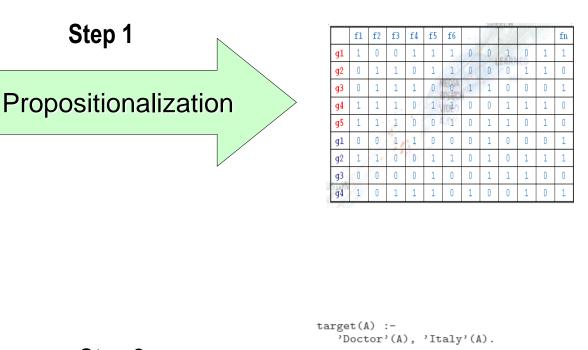


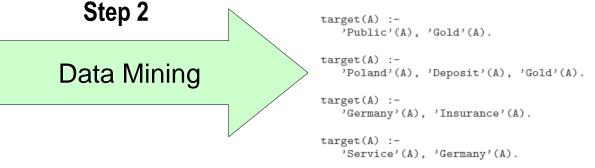
model, patterns, ...

			_		usto						
		ID 1	Zip	S es	so St	\lim_{com}	e	A ge	Cl ub	$_{ m sp}^{ m Re}$	
		3478	34677	m	si	60-7	0	32	me	nr	
/	/	3479	43666	f	ma	80-9	0	45	\mathbf{nm}	re	
\square			order	_			_				
Customer ID	Ore	der	Store]]	Deliv	ery	P	ayı	nt		
ш	ш		шļ	I	Mode	, i	M	lód	e		
			\	ŀ							
3478		10267		ılı	egula	ar	Сŧ	sh			
3478	344	6778	12	١	expre	SS	cł	1ec]	k		
3478		28386		þ	egula	ar	cł	1ec]	k		
3479	323	3444	17	N	xpre	ss	cı	edi	it		
3479	347	5886	12	h	egula	ar	сı	edi	it		
				ŀ	. <u>}</u>						
					\Box				st	tore	
					Sto	re II)	Siz	e '.	Гуре	Location
							- L				
					12		1	\mathbf{sm}		ranchise	
					17]	ları	ze li	ndep	rural

Relational representation of customers, orders and stores.

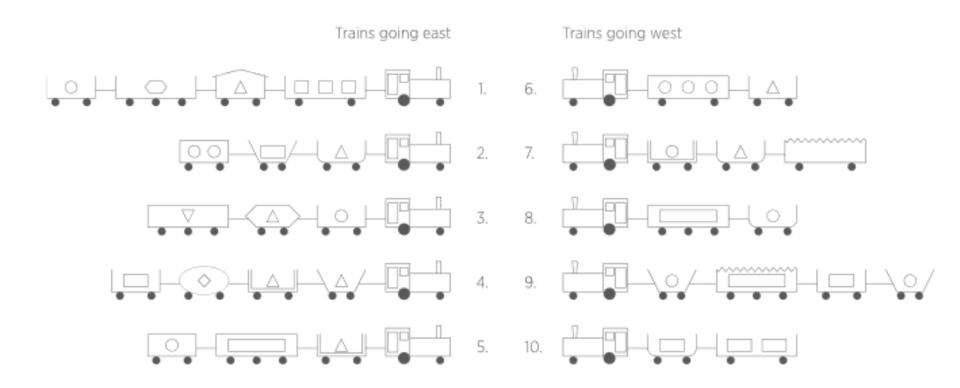
	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	nd i o	0	0	1	1	1	0
g5	1	1	1	0	0 4	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1



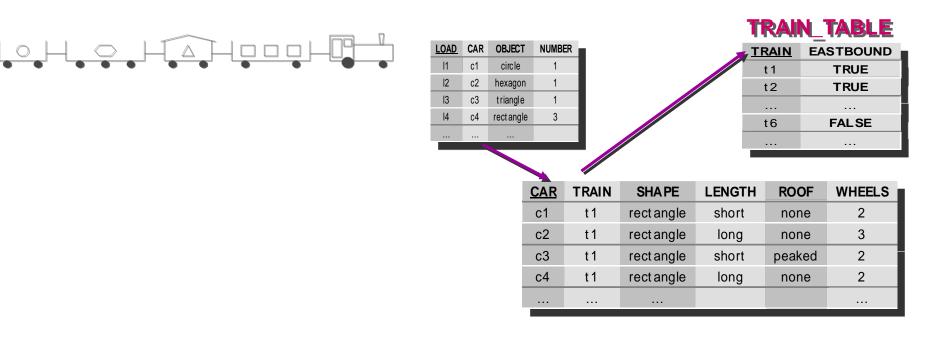


patterns (set of rules)

Sample ILP problem: East-West trains



Relational data representation



Propositionalization in a nutshell

LOA I1

> |2 |3 |4

Propositionalization task

Transform a multi-relational (**multiple-table**) representation to a propositional representation (**single table**)

Proposed in ILP systems LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999), ...

						Ţ	RAIN	l_table	
<u>AD</u>	CAR	OBJECT	NUMBE	R			RAIN	EASTBOUN	D
	c1	circle	1				t 1	TRUE	
2	c2	hexagon	1	_			t2	TRUE	
5	c3	triangle	1						
ļ	c4	rectangle	3				t6	FALSE	
		$\overline{}$							
			CAR	TRAIN	SHA PE	LENGTH	ROC	F WHEELS	S
			CAR c1	t1	SHA PE rect angle	LENGTH short	ROC		S
					-			e 2	5
			c1	t1	rectangle	short	non	e 2 e 3	5
			c1 c2	t 1 t 1	rect angle rect angle	short long	non non	e 2 e 3 ed 2	5
			c1 c2 c3	t1 t1 t1	rect angle rect angle rect angle	short long short	non non peak	e 2 e 3 ed 2	S

Propositionalization in a nutshell

Main propositionalization step: first-order feature construction

						Ţ	RAII	N_'	TABLE	
<u>oad</u>	CAR	OBJECT	NUMBE	R			RAIN	EA	STBOUND	
11	c1	circle	1				t 1		TRUE	1
12	c2	hexagon	1				t2		TRUE	
13	c3	triangle	1							Η
14	c4	rect angle	3				t6		FALSE	
										1
			<u>CAR</u>	TRAIN	SHA PE	LENGTH	ROO	DF	WHEELS	
			c1	t1	rect angle	short	nor	ne	2	
			c2	t 1	rect angle	long	nor	ne	3	
			c3	t1	rect angle	short	peak	ed	2	
			c4	t 1	rect angle	long	nor	ne	2	

Propositional learning:

 $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation:

eastbound(T) \leftarrow hasShortCar(T),hasClosedCar(T).

PROPOSITIONAL TRAIN_TABLE

<u>train(T)</u>	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)
t1	t	t	f	t	t
t2	t	t	t	t	t
t3	f	f	t	f	f
t4	t	f	t	f	f

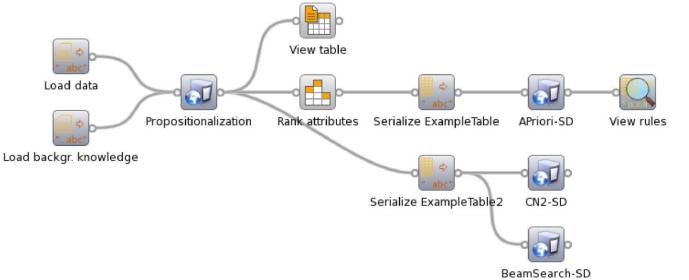
RSD algorithm: Relational Data Mining in Orange4WS

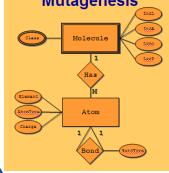
 service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21) f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

subgroup discovery using CN2-SD

mutagenic(M) \leftarrow feature121(M), feature235(M)





131

RSD algorithm

Efficient propositionalization can be applied to individual-centered, multi-instance learning problems:

- one free global variable (denoting an individual, e.g. molecule M)
- one or more structural predicates: (e.g. has_atom(M,A)), each introducing a new existential local variable (e.g. atom A), using either the global variable (M) or a local variable introduced by other structural predicates (A)
- one or more utility predicates defining properties of individuals or their parts, assigning values to variables

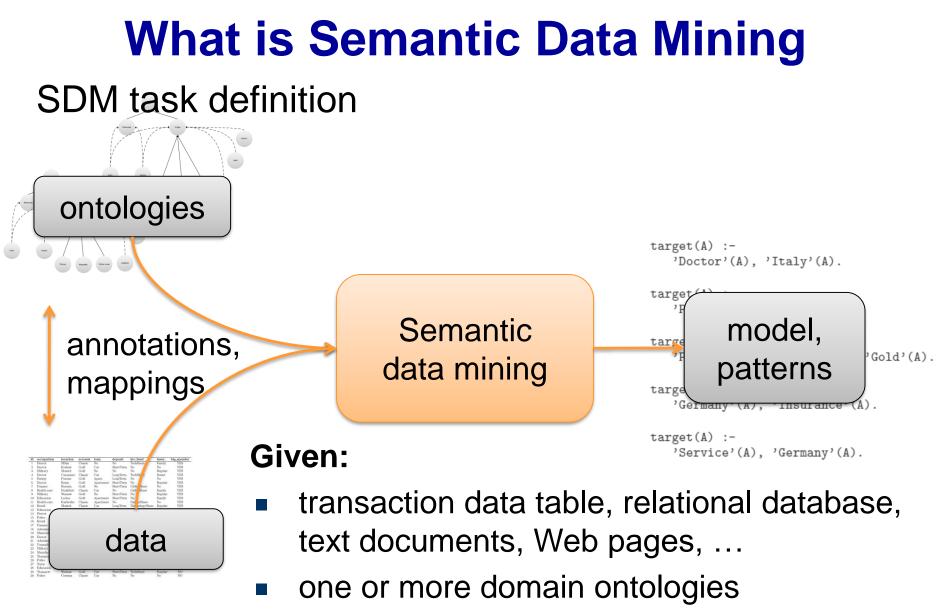
feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

mutagenic(M):- feature121(M), feature235(M)

Outline

- Introduction to Machine Learning and Data Mining: Techniques overview
- Rule learning
- Relational learning: Propositionalization
- Semantic data mining
- Relational learning: Wordification

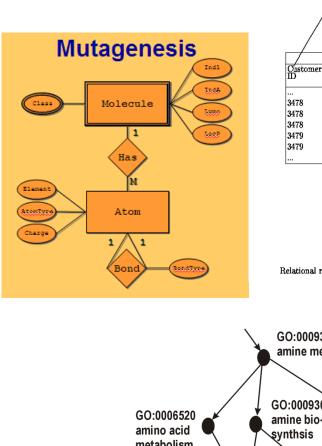


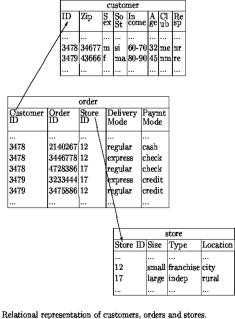
Find: a classification model, a set of patterns

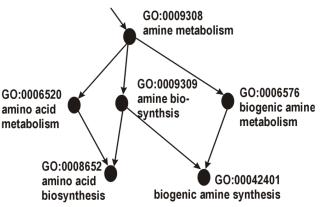
134

Semantic data mining

- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data
 - Learning from complex structured data: e.g., molecules and their biochemical properties
 - Learning by using domain knowledge in the form of ontologies = semantic data mining



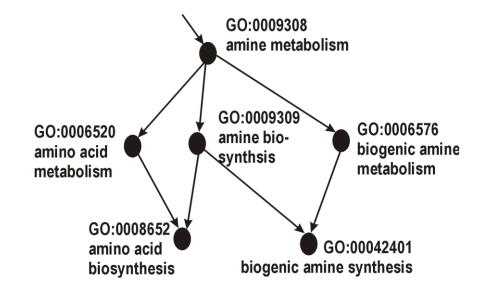




Using domain ontologies in Semantic Data Mining

Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO)

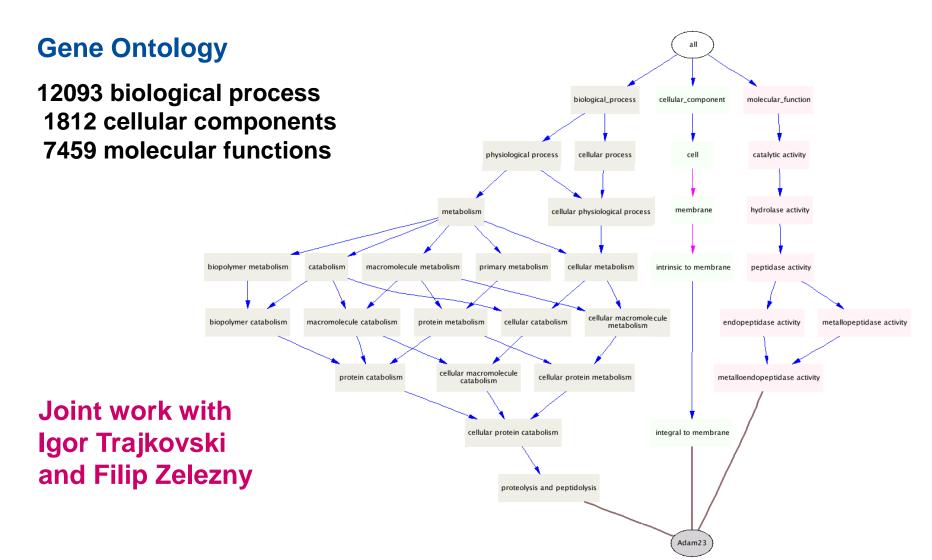
- GO is a database of terms, describing gene sets in terms of their
 - functions (12,093)
 - processes (1,812)
 - components (7,459)
- Genes are annotated to GO terms
- Terms are connected (is_a, part_of)
- Levels represent terms generality



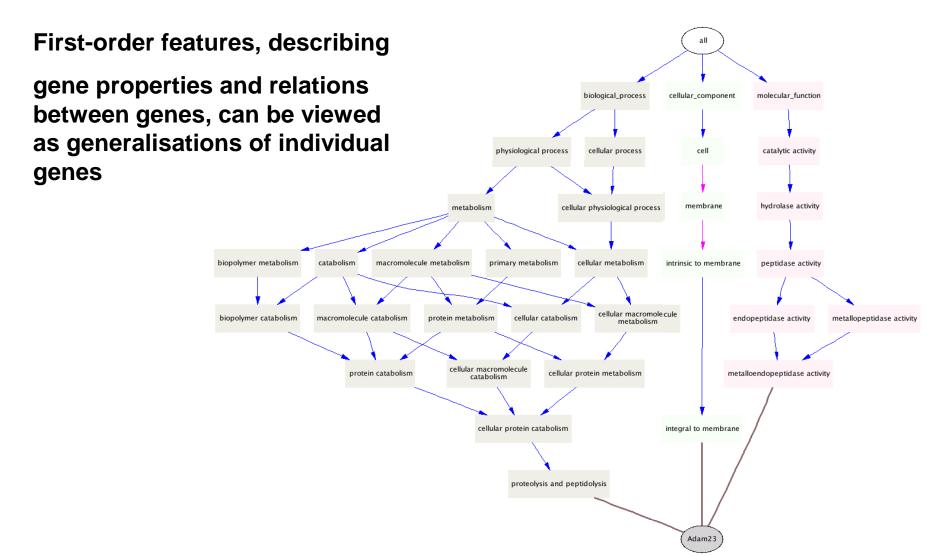
What is Semantic Data Mining

- Ontology-driven (semantic) data mining is an emerging research topic
- Semantic Data Mining (SDM) a new term denoting:
 - the new challenge of mining semantically annotated resources, with ontologies used as background knowledge to data mining
 - approaches with which semantic data are mined

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



Semantic subgroup discovery with RSD

- 1. Take ontology terms represented as logical facts in Prolog, e.g. component (gene2532, 'GO:0016020'). function (gene2534, 'GO:0030554'). process (gene2534, 'GO:0007243'). interaction (gene2534, gene4803).
- 2. Automatically generate generalized relational features:

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD

Step 2: RSD feature construction

Construction of first order features, with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020') f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), existential process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

Step 3: RSD Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036)

. . . .

random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

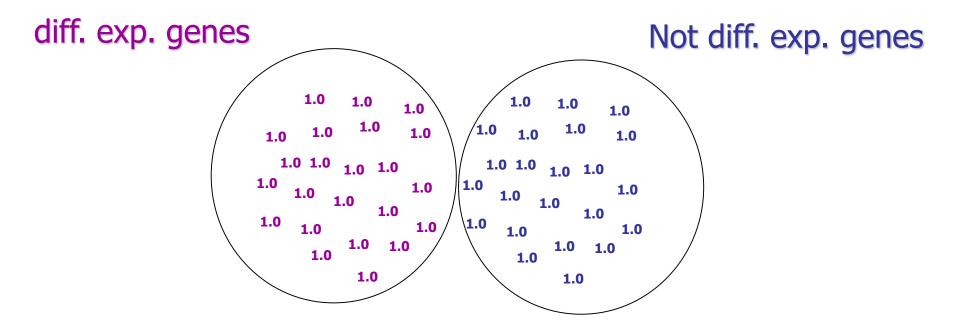
	f1	f2	f3	f4	f 5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g 3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g 5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g 3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

. . . .

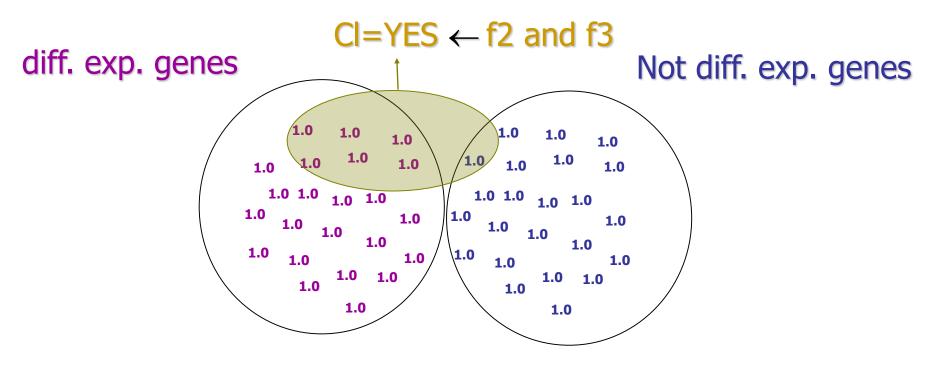
Step 4: RSD rule construction with CN2-SD

	f1	f2	£3	f4	f5	f6						fn	Over-
g1	1	0	0	1	1	1	0	0	1	0	1	1	expressed
g 2	0	1	1	0	1	1	0	0	0	1	1	0	IF
g 3	0	1	1	1	0	0	1	1	0	0	0	1	f2 and f3
g4	1	1	1	0	1	1	0	0	1	1	1	0	[4,0]
g 5	1	1	1	0	0	1	0	1	1	0	1	0	
g1	0	0	1	1	0	0	0	1	0	0	0	1	
g2	1	1	0	0	1	1	0	1	0	1	1	1	
g 3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871')



Subgroup Discovery



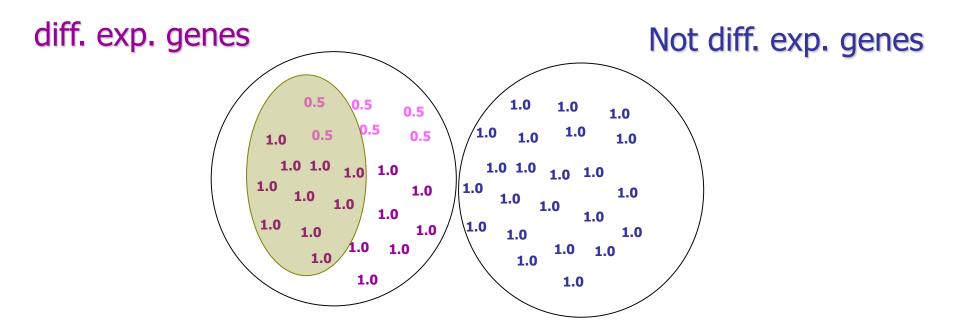
In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes

Subgroup Discovery



RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

Outline

- Introduction to Machine Learning and Data Mining: Techniques overview
- Rule learning
- Relational learning: Propositionalization
- Semantic data mining
- Relational learning: Wordification

Propositionaization through Wordification: Motivation

- Develop a RDM technique inspired by text mining
- Using a large number of simple, easy to understand features (words)
- Improved scalability, handling large datasets
- Used as a preprocessing step to propositional learners

Background: Data mining

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discovery
01	17	myope	no	reduced	NONE	from data
O2	23	myope	no	normal	SOFT	IIOIII uata
O3	22	myope	yes	reduced	NONE	
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	
06-013						Dete Mining
O14	35	hypermetrope	no	normal	SOFT	Data Mining 🔰 💻 💻
O15	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	
017	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	,
019-023						model, patterns, clusters,
O24	56	hypermetrope	yes	normal	NONE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

data

Given: transaction data table, a set of text documents, ... **Find:** a classification model, a set of interesting patterns

. . .

Data mining: Task reformulation

Person	Young	Муоре	Astigm.	Reuced tea	Lenses
01	1	1	0	1	NO
02	1	1	0	0	YES
O3	1	1	1	1	NO
O4	1	1	1	0	YES
O5	1	0	0	1	NO
06-013					
O14	0	0	0	0	YES
O15	0	0	1	1	NO
O16	0	0	1	0	NO
O17	0	1	0	1	NO
O18	0	1	0	0	NO
019-023					
O24	0	0	1	0	NO

Binary features and class values

Text mining: Words/terms as binary features

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Instances = documents Words and terms = Binary features

Text mining

BoW vector construction

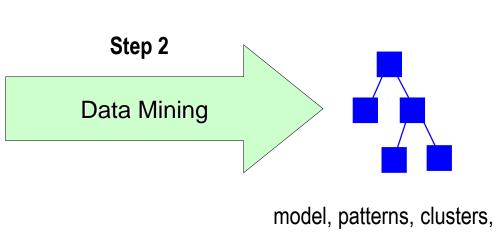
Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

. . .

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



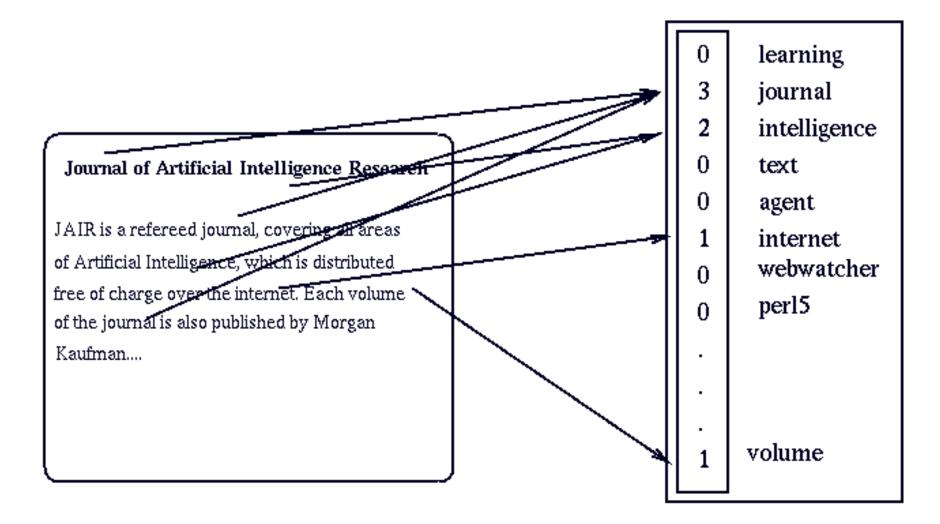
Text Mining

- Feature construction
 - StopWords elimination
 - Stemming or lemmatization
 - Term construction by frequent N-Grams construction
 - Terms obtained from thesaurus (e.g., WordNet)
- BoW vector construction
- Mining of BoW vector table
 - Feature selection, Document similarity computation
 - Text mining: Categorization, Clustering, Summarization,

Stemming and Lemmatization

- Different forms of the same word usually problematic for text data analysis
 - because they have different spelling and similar meaning (e.g. learns, learned, learning,...)
 - usually treated as completely unrelated words
- Stemming is a process of transforming a word into its stem
 - cutting off a suffix (eg., smejala -> smej)
- Lemmatization is a process of transforming a word into its normalized form
 - replacing the word, most often replacing a suffix (eg., smejala -> smejati)

Bag-of-Words document representation



Word weighting

- In bag-of-words representation each word is represented as a separate variable having numeric weight.
- The most popular weighting schema is normalized word frequency TFIDF:

$$tfidf(w) = tf \cdot \log(\frac{N}{df(w)})$$

- Tf(w) term frequency (number of word occurrences in a document)
- Df(w) document frequency (number of documents containing the word)
- N number of α l documents
- Tfidf(w) relative importance of the word in the document

The word is more important if it appears several times in a target document

The word is more important if it appears in less documents

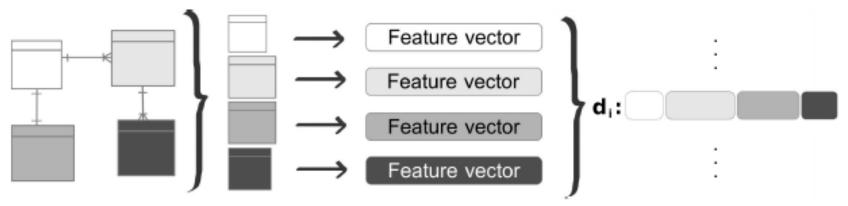
Cosine similarity between document vectors

- Each document D is represented as a vector of TF-IDF weights
- Similarity between two vectors is estimated by the similarity between their vector representations (cosine of the angle between the two vectors):

Similarity
$$(D_1, D_2) = \frac{\sum_{i} x_{1i} x_{2i}}{\sqrt{\sum_{j} x_j^2} \sqrt{\sum_{k} x_k^2}}$$

Wordification Methodology

- Transform a relational database to a document corpus
 - For each individual (row) in the main table, concatenate words generated for the main table with words generated for the other tables, linked through external keys



Text mining

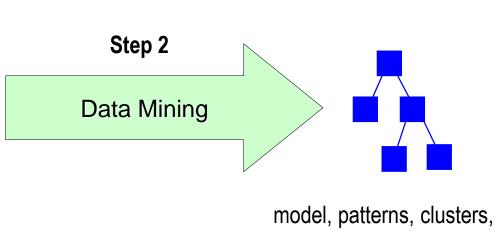
BoW vector construction

Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



Wordification Methodology

- One individual of the main data table in the relational database ~ one text document
- Features (attribute values) ~ the words of this document
- Individual words (called **word-items** or **witems**) are constructed as combinations of:

[table name]_[attribute name]_[value]

• **n-grams** are constructed to model feature dependencies:

$$[witem_1]_{-}[witem_2]_{-} \dots _{-}[witem_n]$$

Wordification Methodology

- Transform a relational database to a document corpus
- Construct BoW vectors with TF-IDF weights on words

(optional: Perform feature selection)

Apply text mining or propositional learning on BoW table

Wordification

CAR

TRAIN		carID	shape	roof	wheels	train
trainID	eastbound	c11	rectangle	none	2	t1
t1	east	c12	rectangle	peaked	3	t1
•••				•••		•••
t5	west	c51	rectangle	none	2	t5
		c52	hexagon	flat	2	t5

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, car_wheels_3, car_roof_peaked__car_shape_rectangle, car_roof_peaked__car_shape_rectangle__car_wheels_3], **east**

t5: [car_roof_none, car_shape_rectangle, car_wheels_2, car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, car_wheels_2, car_roof_flat__car_shape_hexagon, car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], **west**

TF-IDF calculation for BoW vector construction:

	car_shape	car_roof	car_wheels_3	car_roof_peaked	car_shape_rectangle	 class
	_rectangle	_peaked		car_shape_rectangle	car_wheels_3	
t1	0.000	0.693	0.693	0.693	0.693	 east
t5	0.000	0.000	0.000	0.000	0.000	 west

TF-IDF weights

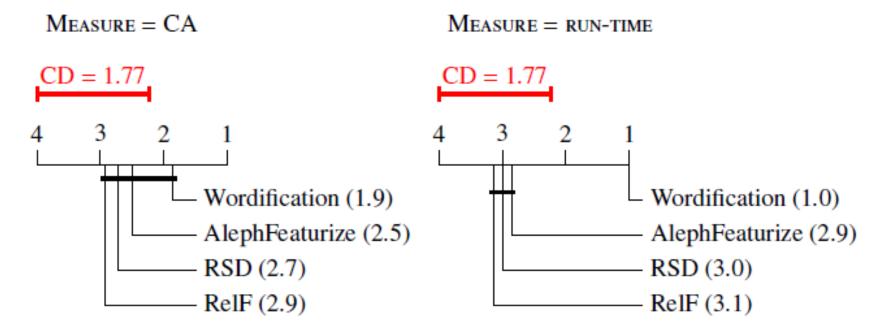
- No explicit use of existential variables in features, TF-IDF instead
- The weight of a word indicates how relevant is the feature for the given individual
- The TF-IDF weights can then be used either for filtering words with low importance or for using them directly by a propositional learner (e.g. J48)

Experiments

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)
 - first applying Friedman test to rank the algorithms,
 - then post-hoc test Nemenyi test to compare multiple algorithms to each other

Experiments

- Cross-validation experiments on 8 relational datasets: Trains (in two variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
- Results (using J48 for propositional learning)



Experiments

Domain	Algorithm	J48-Accuracy[%]	J48-AUC	Run-time[s]
Trains	Wordification	55.00	0.51	0.11
without position	RelF	65.00	0.65	1.04
	RSD	65.00	0.68	0.53
	A lephFeaturize	75.00	0.82	0.40
Trains	Wordification	95.00	0.91	0.12
	RelF	65.00	0.62	1.06
	RSD	50.00	0.53	0.47
	A lephFeaturize	85.00	0.74	0.38
Mutagenesis42	Wordification	97.62	0.93	0.39
	RelF	80.95	0.59	2.11
	RSD	97.62	0.93	2.63
	A lephFeaturize	97.62	0.93	2.07
Mutagenesis188	Wordification	95.74	0.90	1.65
	RelF	75.53	0.79	7.76
	RSD	94.15	0.91	10.10
	A lephFeaturize	87.23	0.88	19.27
IMDB	Wordification	84.34	0.79	1.23
	RelF	79.52	0.73	32.49
	RSD	73.49	0.47	4.33
	A lephFeaturize	73.49	0.47	4.96
Carcinogenesis	Wordification	61.09	0.62	1.79
	RelF	54.71	0.53	16.44
	RSD	58.05	0.56	9.29
	AlephFeaturize	55.32	0.49	104.70
Financial	Wordification	86.75	0.48	4.65
	RelF	97.00	0.91	260.93
	RSD	86.75	0.48	533.68
	AlephFeaturize	86.75	0.48	525.86

Use Case: IMDB

- IMDB subset: Top 250 and bottom 100 movies
- Movies, actors, movie genres, directors, director genres
- Wordification methodology applied
- Association rules learned on BoW vector table

Use Case: IMDB

movie_genre_drama <-- goodMovie, actor_name_RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock \leftarrow actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director_name_StevenSpielberg ~ goodMovie, movie_genre_adventure, (Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.

Summary

- Wordification methodology
- Allows for solving non-standard RDM tasks, including RDM clustering, word cloud visualization, association rule learning, topic ontology construction, outlier detection, ...

Summary: From machine learning to Semantic Data Mining

